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Abstract

The price of an airline ticket is determined by the decisions of not one but two
separate departments of the same airline: the pricing department and the revenue
management department. The pricing department sets a menu of fares starting many
days from the actual flight. The revenue management department treats the menu as
given but decides in each moment of time which part of the menu to make available for
purchase and which to keep closed. The revenue management department cannot add
new fares or change the prices of the existing ones. As the result, the price of a ticket
for a given flight can take only a limited number of values, not more than the number
of fares in the menu. The paper offers a novel explanation for this seemingly unconven-
tional organizational structure. It demonstrates that, in a strategic environment, firms
can benefit from restricting the set of available actions as long as they can credibly
commit to doing so. Creating a separate department that restricts the set of prices by
choosing a menu of fares can be a way to establish and maintain the credibility of such
a commitment.
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1 Introduction

It is well known that pricing in the airline industry is complex. What is less known is that at

any given moment, the price of a flight ticket is determined by the decisions of not one but

two airline departments, the pricing department and the revenue management department.

The pricing department sets a menu of fares starting many days from the actual flight. This

menu is subsequently updated very rarely. The revenue management department treats the

menu as given but decides in each moment of time which part of the menu to make available

for purchase and which to keep closed. The revenue management department cannot add

new fares or change the prices of the existing ones. As the result, the price of a ticket for a

given flight can take only a limited number of values, not more than the number of fares in

the menu. Why would airlines introduce such a complex structure, in which they effectively

restrict their flexibility in changing the prices over time? At first thought it might seem they

can do better by just changing the price over time without precommitting to a set of fares.

One answer may be that, as long as the fare grid is fine enough, airlines do not lose much

from significantly restricting the set of possible prices (Wilson, 1993). This paper offers an

alternative explanation. It demonstrates that, in a strategic environment, firms can benefit

from restricting the set of available actions as long as they can credibly commit to doing so.

Creating a separate department that restricts the set of prices by choosing a menu of fares

might be a way to establish and maintain the credibility of such a commitment.

The idea that the ability to commit to a specific action can be beneficial for an agent is a

classic observation of game theory (Schelling, 1960). The contribution of this paper is to show

that in a broader set of situations, agents can benefit if they are able commit to a menu of

actions. As a simple theoretical example of why menus may be desirable, consider a Bertand

game between two firms that sell identical products. The costs of production are zero. The

firm that charges the lower price gets the market demand. If the prices are the same, the

market demand is evenly divided between the firms. In this example, the equilibrium payoffs

are zero. The ability to commit cannot increase the profit of an individual firm. If it commits

to a price other than zero, the competitor can steal the market by charging a slightly lower

price and getting the entire market. Thus, in this example, commitment power alone is not

enough to sustain supracompetitive prices.

Consider now the following modification. The game consists of two stages: the commit-

ment stage and the action stage. At the commitment stage, firms can simultaneously and

independently decide to constrain themselves to a menu of prices. Their choices are then

publicly observed. Then, at the action stage, firms independently and simultaneously choose

prices from their menus. A price outside the restricted menu cannot be chosen by firms. The
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profits are determined according to the Bertrand game described above.

Unlike in the original game, the equilibrium payoffs in this modification can be positive.

Moreover, there exists a subgame perfect equilibrium in which each firm gets a half of the

monopoly profit. The following pair of symmetric strategies form this equilibrium. At the

commitment stage, each firm chooses a menu that consists of two prices, the monopoly

price and zero. If both firms chose these menus, then charging the monopoly price is an

equilibrium of this subgame. Indeed, the only deviation at the action stage is charging zero,

which reduces the profit from the half of the monopoly profit to zero. There are many

deviations at the commitment stage but to be profitable they have to include a price that is

higher than zero and less than the monopoly price. If a firm attempts such deviation, then

the competitor will be indifferent between charging zero or the monopoly price at the action

stage. If it charges zero, then the deviator will end up receiving zero. Thus, deviations at

the commitment stage cannot be profitable either.

Thus, as we can see, Bertrand competitors can still achieve the monopoly outcome with-

out signing an enforceable contract or using repeated interactions to enforce monopoly pric-

ing. What they need to do is to exclude a set of profitable deviations from the monopoly

outcome (“temptation”) and keep “punishment” actions in case their competitors misbehave

at the commitment stage.

This example is in a certain sense limited. Even when a firm undercuts by a very small

amount, the profit of its competitor decreases to zero. This discontinuity of the payoffs

guarantees that the punishment by zero price is a credible threat. If the competitors deviate

even by a small amount, the profit of the opponent drops to zero. For continuous payoffs,

these pair of strategies would not be an equilibrium anymore. This paper focuses on a

class of games with continuous payoffs and characterizes pure-strategy subgame-perfect Nash

equilibria of in a game that has two stages described above.

The two-stage construction of the paper has four crucial components. First, the agents

are free to choose any subsets of the unrestricted action spaces. In particular, these subsets

can be non-convex or include isolated actions. Non-convex subsets, as we will see later, allow

players to achieve payoffs that dominate the Nash equilibrium payoffs of the original game.

Second, it is important that the players are able to commit not to play actions outside of the

chosen subsets. Without such commitment, the initial stage will not change the incentives

of the players. Third, the chosen restricted set must become public knowledge. Finally,

the players choose these subsets simultaneously. If players move sequentially, then some

outcomes may not be an equilibrium to the sequential-move game.

Pricing in the airline industry has all these four components. Airline fares are discrete.

The separation of the two departments creates some commitment power. Indeed, according

3



to industry insiders, these departments do not actively interact with each other. Next, it

turns out that sixteen major airlines own a company, the Airline Tariff Publishing Company

(ATPCO), whose role is to collect menus of fares (but not their real-time availability) from

more than 500 airlines and distribute them four times a day to all airlines, travel agents,

and reservation systems. Thus, the information about the chosen subsets of fares becomes

public and the decisions are made simultaneously. Therefore, all necessary features implied

by the commitment concept are present in the pricing competition among U.S. airlines.

The paper has three main theoretical results. The first results shows that to support other

than Nash equilibrium outcome, players have to constrain their action space. Moreover, at

least one player has to choose a subset with several actions at the commitment stage. The

second result provides a necessary and sufficient condition for an outcome to be supported by

a commitment equilibrium. An important corollary from this result shows that in a Bertrand

oligopoly firms may mutually gain from self-restraint while in Cournot they cannot. The

third result demonstrates that there is a whole set of outcomes that can be supported by

an equilibrium of the two-stage model. This set, among others, includes Pareto-efficient

outcomes. The proof of the third result is constructive.

The history of airline pricing provides several pieces of evidence that supports the theory

advanced by this paper. For example, a Harvard Business School case study known as

American Airlines Value Pricing (1992) confirms the theoretical prediction of the model,

namely the first result of the paper. In April 1992, American Airlines effectively tried to

abandon revenue management system. They thought that fares were too complex, so the

idea was to have one fare that reflects the “true value.” In terms of the model, they tried to

commit to a set that included only one action. Within a week, most major carriers (United,

Delta, Continental, Northwest) adopted the same pricing structure. A fare war immediately

followed. That is what exactly the model predicts: if players do not include any punishment

actions, a Bertrand-type price war (the unique static Nash equilibrium) is the only subgame

equilibrium outcome. By November 1992, American Airlines acknowledged that the plan

had “clearly failed” and decided to come “back to setting and manipulating thousands of

fares throughout the system.”

Importantly, the goal of the paper is not to develop a comprehensive model of airline

pricing that can be taken directly to data. Instead, the ultimate goal of this paper is to

propose an explanation of one particular aspect of airline pricing, namely the presence of two,

somewhat independent departments. Therefore, the approach taken here is to abstract away

from many important aspects of the industry (such as intertemporal price discrimination,

dynamic capacity allocation, repeated interactions, multimarket contact, multiproduct firms)

and find the simple possible framework that demonstrates the main insight of the paper. This
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paper is one of the first papers that establish a link between the organizational structure of

a firm and its market performance in an imperfectly competitive industry.

The rest of the paper is organized as follows. Section 2 reviews related literatures.

Section 3 gives a brief overview of airline pricing and its history. It motivates the theoretical

framework developed in the subsequent sections. Section 4 presents notations and definitions,

and shows that the two-stage modification is a coarsening concept and can have as an

equilibrium both Pareto better and Pareto worse outcomes compared to the Nash equilibrium

outcome. In Section 5, I show that supermodular games is a natural class in which we can

study the two-stage modification as it is the class in which a (pure-strategy) subgame perfect

equilibrium is guaranteed to exist. Section 6 shows that there is a nontrivial set of outcomes

that can be supported as an equilibrium in the two-stage game. Section 7 concludes.

2 Related Literature

This paper contributes to several literatures. First, the paper extends our understanding of

the role of commitment in strategic interactions originally developed by Schelling (1960). In

his work, Schelling gives examples of how a player may benefit from reducing her flexibility.

In these examples, a player receives a strategic advantage by moving first and committing to

a particular action. No matter what the other players do, she will not play a different action.

In contrast, in this paper, the players move simultaneously. As a result, they must recognize

that they need some flexibility in their actions in case other players do not restrict their

actions or otherwise deviate. For example, if a player commits to a single action, then she

will have no punishment should other players deviate. When a player commits to a subset

of actions, then her punishment action may differ from her reward action. Moreover, the

punishment may depend on the exact deviation chosen by an opponent.

At the same time, punishments have to be credible. Therefore, players do not want to

include too many actions as their potential punishments. A punishment is effective only

in the case when those who are supposed to punish will have an incentive to execute this

punishment. The smaller is the set of available actions, the more likely the punishment is

to be executed because less alternative actions are available to the player. Thus, this paper

studies the trade-off between the flexibility and the credibility of available punishments.

Committing to a single action is one of the extremes in this trade-off, when punishment is

fully credible but completely inflexible.

Ideally, players would like to sign an enforceable contract that specifies what action each

agent will play. Of course, it may be hard to specify exactly what action each agent should

play. Hart and Moore (2004) recognize this fact and view a contract as a mutual commitment
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not to play outcomes that are ruled out by the signed contract. Bernheim and Whinston

(1998) show that optimal contracts, in fact, have to be incomplete and include more than

one observable outcome if some aspects of performance cannot be verified. Both papers view

contracts as a means to constrain mutually the set of available actions. This paper assumes

that players cannot sign such contracts. If they choose to restrict their set of available

actions, they can only do it independently of each other.

By maintaining independence, this paper is more similar in the spirit to the literature

that models tacit collusion. It is well known that if players interact with each other during

several periods, they can achieve a certain level of cooperation even if they act independently

of each other. In finite-horizon games, deviations can be deterred by a threat to switch to

a worse equilibrium in later periods (Benoit and Krishna, 1985). Similarly, in infinite-

horizon games, players can use a significantly lower continuation value as a punishment that

supports an equilibrium in the subgame induced by a deviation. This result, known as the

Folk theorem, states that if players are patient enough any individually rational outcome can

be supported by a subgame perfect Nash equilibrium (see Abreu et al. (1990) and Fudenberg

and Maskin (1986), among others). In contrast, this paper assumes that the game is played

only once. As a result, players cannot use future outcomes to punish deviations. Instead,

they strategically choose a subset of actions that must include credible punishments sufficient

to deter deviations from the proposed equilibrium. These punishments must be executed

immediately to affect any cooperation.

Fershtman and Judd (1987) and Fershtman et al. (1991) studied delegation games in

which players can modify their payoff functions by signing contracts with agents who act

on their behalf. By doing so, the players can establish commitment to play an action other

than a Nash equilibrium strategy, which may result in achieving a Pareto efficient outcome.

This paper takes a different approach. Instead of modifying their payoff functions, players

can modify their action sets in a very specific way. They can exclude a subset of actions but

cannot include anything else. Thus, the model of this paper may be viewed as a specific case

of payoff modification: the players can assign a large negative value to a subset of actions

but cannot modify the payoffs in any other way.

The closest papers to this paper are Bade et al. (2009) and Renou (2009). They develop

a similar two-stage construction in which commitment stage is followed by a one-shot game.

The constructions of their paper, however, are different in several important aspects. In the

first paper, players can only commit to a convex subset of actions. This paper, however,

allows players to choose any subset of actions. If players can choose only a convex subset

of actions, then they often cannot get rid of temptations and keep actions that can be used

as punishments, which are key to the results of this paper. In the homogeneous Bertrand
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example, supracompetitive prices cannot be sustained in equilibrium if the subsets of actions

are restricted to be convex at the commitment stage.The second paper considers finite games,

while this paper studies supermodular games without making any restrictions on the number

of available actions.

There are a number of papers that endogenize players’ commitment opportunities.1 This

paper does not address this question. The ability of firms to voluntarily restrict their action

space is assumed. This assumption, however, is motivated by real world practices used by

firms in an important industry: airlines.

3 Pricing in the airline industry

Back in the 1960s, buying an airline ticket was a simple process. A traveler told her travel

agents when and where she wanted to fly. The travel agent then consulted a thick book that

had all schedules and corresponding airfares for that season. The final step was to call the

airline to verify that seats were still available and if so to book a seat on the flight. Back then

airfares were regulated. A federal government agency, the Civil Aeronautics Board (CAB),

used to decide which airline flew where and how much they were allowed to charge. The

fares were calculated using a nonlinear function of the route’s distance. They intended to

cover the airlines’ projected costs.

The industry changed dramatically in the 1970s when the Airline Deregulation Act was

signed into law. The new law removed government control over routes, fares, or entry of

new airlines. Borenstein (2004) identifies the following two “most important and unforeseen

developments in the industry following deregulation.” First, the development of hub-and-

spoke networks. Second, airlines’ increased sophistication in pricing and marketing their

products. The latter development is what motivates our theoretical analysis.

The current pricing system is often characterized as being sophisticated and complex. An

airline can start selling tickets on a scheduled flight as early as 330 days before departure.

At any given moment, the price of a ticket is determined by the decisions of two airline

departments, the pricing department and the revenue management department. The pricing

department moves first and develops a discrete set of fares for each market. The revenue

management department moves second and chooses which of the fares from this set to offer

for sale at any period of time.

A fare typically contains the following elements: a fare basis code (a “name” of the fare

that includes its booking class, or bucket), the origin and destination airports, permitted

routing, the price, first and last ticket dates, first and last travel dates, and any restrictions

1See Rosenthal (1991), Van Damme and Hurkens (1996), and Caruana and Einav (2008), among others.
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(e.g. minimum stay, advance purchase requirement, blackout dates, cancellation and change

penalties). Surprisingly, there is little variation in these restrictions. Most fares are either

unrestricted (fully refundable) or restricted (non-refundable). The non-refundable fares have

the same penalties and restrictions regardless of their price, route, or how far in advance

they were bought. What differentiates one restricted fare from another is mainly their price

and sometimes advance purchase requirements (APR).2 Multiple fares typically correspond

to the same APR. Thus, airlines indeed offer a menu of prices for exactly the same product.

The fact that the pricing department has published a fare does not guarantee that a

traveler will be able to get that fare on the specific flight. The flight needs to have available

seats in the booking class that corresponds to that fare. How many seats to assign to each

booking class on each flight is the primary decision of the second airline department – the

revenue management department. These decisions are updated in real time. The lowest

price of a ticket for a given flight is determined by the lowest fare that available seats in the

corresponding booking class.

The menu of available fares is known to all airlines. Competing airlines monitor each other

very closely. Three to four times a day, at predetermined times, every airline reports their set

of fares to a central clearinghouse called Airline Tariff Publishing Company (ATPCO). This

clearinghouse is jointly owned by all major airlines. It then produces a list of all industry

fare information and sends it to every major airline and every computer reservation system.

Once the menus of available fares are transmitted, every airline knows what options their

competitors’ revenue management departments have. They do not know for sure which fare

will be made available for sale in any given time, but they know that their competitors

cannot offer fares outside of these menus.

These peculiar characteristics of airline pricing have drawn attention both from antitrust

authorities and airline executives. The following two episodes from the history of airline

pricing illustrate this fact. Incidentally, both episodes are consistent with the prediction of

the theoretical analysis developed in the next sections of this paper.

The first episode is a famous antitrust case known in the literature as the ATPCO case

of 1992 (see Borenstein (2004) for a detailed analysis). The government charged that the

airlines, through ATPCO, had colluded to raise price and restrict competition. According

2An advance purchase requirement (e.g. a fare has to be ticketed twenty-one or more days before depar-
ture) is a screening tool designed to separate different types of customers by incentivizing more price sensitive
customers to buy early. Lazarev (2018) is an empirical study that quantifies the welfare effects of intertem-
poral price discrimination. The focus of this paper, however, is not on advance purchase requirements or
intertemporal price discrimination. The paper analyzes one-shot games. Therefore, the pricing problem can
be viewed as a sequence of perhaps interdependent market segments, each bounded by the corresponding
APR. I do not rely or take into account this interdependence. Instead, the theoretical results of the paper
can be applied to each market segment separately.
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to the complaint, ATPCO became a platform where the airlines could communicate their

decisions by filing fares that will take effect only at some point of time in the future. The

complaint cited several examples in which one airline had announced a fare increase only to

roll it back when no other competitor matched the increased price. In other words, ATPCO

was accused of being a communication device that facilitated collusion among the airlines

that resulted in supra competitive prices, as the folk theorem would have predicted. The

airlines denied the accusations but eventually settled agreeing not to pre-announce future

price changes through ATPCO. Importantly, the settlement did not restrict any other aspect

of airline pricing described above. The theoretical analysis presented in this paper shows

that airlines would be able to coordinate on higher prices even without repeated interactions.

This conclusion would suggest that the settlement as entered should have minimal effect on

the airline prices. Miller (2010) conducted a retrospective empirical analysis and concluded

that the ATPCO case “had at best a temporary effect on airline collusion.” There is no

evidence that the prices fundamentally changed after the settlement entered. This is exactly

what the model developed in this paper would have predicted.

The second episode that provides supporting evidence in favor of the theory developed in

this paper is a Harvard Business School case known as American Airlines’ Value Pricing (Silk

and Michael, 1993). In April 1992, the chairman, president, and CEO of American Airlines

Robert L. Crandall had it enough with complexity of airline pricing.3 He declared that airline

pricing was so “complex that our customers neither understand it nor think it is fair.” He

dramatically proposed to reduce the total number of different fares offered by American.

On any given flight, there would be only four different fares: first, coach, coach with 7-day

advance purchase, and coach with 21-day advance purchase. Effectively, the menus of fares

were eliminated. Proposition 1 from Section 4.3 of this paper gives some particularly good

insight on what was likely to happen after this initiative was announced. Without publicly

available menus, it is impossible to sustain coordination with supra competitive prices in a

static game. The reaction of American Airlines’ competitors was fully consistent with this

prediction of the paper. Within a day or two following American’s announcement, the new

fare structure was adopted by most major carriers including America West, Continental,

Delta, Northwest, United and USAir. Then, three days after American’s initiative, TWA

responded with a set of price changes that undercut Americans new regular coach fares by

10-20%. That started an industry-wide price war that lasted several months. In the wake of

massive operating losses, American abandoned its Value Pricing structure in the beginning of

3Admittedly, this paper views these decisions of the CEO as an exogenous shock than should never have
happened on the equilibrium path. Once it happened, the response of the competitors was fully consistent
with their equilibrium strategies.
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October 1992. In an interview with the British Broadcasting Corporation (BBC), Crandall

summarized Americans view on the termination of Value Pricing: “We tried to provide some

price leadership, but it didn’t work, so we are back into the death by a thousand cuts.”

4 Elements of a commitment equilibrium

4.1 Definitions

The game G Economic agents play a one-shot normal-form game, G. The game has

three elements: a set of players I = {1, 2, ..., n}, a collection of action spaces {Ai}i∈I , and

a collection of payoff functions {πi : A1 ×A2 × ...×An −→ R}i∈I . Thus, G = (I,A, π) ,

where A = A1 × A2 × ... × An and π = π1 × π2 × ... × πn. (In general, the omission of a

subscript indicates the cross product over all players. Subscript −i denotes the cross product

over all players excluding i). The agents make decisions simultaneously and independently,

which determines their payoffs. I refer to a ∈ A as an outcome of G and to π (a) ∈ Rn as a

payoff of G.

I assume that for every player i: a) Ai is a compact subset of R, and b) πi is upper

semi-continuous in ai, a−i.

An outcome a∗ ∈ A is called a Nash equilibrium (NE) outcome if there exists a pure-

strategy Nash equilibrium that supports a∗ ∈ A. In other words, a∗ ∈ A is a NE outcome if

and only if for all i ∈ I the following inequality holds:

πi
(
a∗i , a

∗
−i
)
≥ πi

(
ai, a

∗
−i
)

for any ai ∈ Ai.

Denote the set of all NE outcomes by EG and the set of corresponding NE payoffs by ΠG.

The two-stage game C (G) Consider the following modification of game G. Define C (G)

as the following two-stage game:

Stage 0 (commitment stage). Each agent i ∈ I simultaneously and independently

chooses a non-empty compact subset Ai of her action space Ai. Once chosen, the subsets

are publicly observed.

Stage 1 (action stage). The agents play gameGC = (I, A, π) where A = A1×A2×...×An.

In other words, the players can choose actions that only belong to the subsets chosen at stage

0. The actions outside the chosen subsets Ai can not be played.

In this paper, I study pure-strategy subgame perfect Nash equilibria of C (G).

A strategy for player i in the game C (G) is a set Ai and a function σi which selects, for

any subsets of actions chosen by players other than i, an element of Ai, i.e. σi : A−i −→ Ai. A
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pure-strategy subgame perfect Nash equilibria of C (G) is called an independent simultaneous

self-restraint (commitment) equilibrium of the game G. Formally, a commitment equilibrium

is an n-tuple of strategies, (A∗, σ∗), such that

(i) for all i and any set of actions Ãi ∈ Ai,

πi (σ
∗ (A∗)) ≥ πi

(
σ̃∗1, ..., σ̃

∗
i−1, ãi, σ̃

∗
i+1, ..., σ̃

∗
n

)
for any ãi ∈ Ãi,

where σ∗ (A∗) =
(
σ∗1
(
A∗−1

)
, . . . , σ∗n

(
A∗−n

))
, σ̃∗j = σ∗j

(
Ã∗−j

)
and Ã∗−j = A∗1 ×

...A∗j−1 × A∗j+1 × ...A∗i−1 × Ãi × A∗i+1...× A∗n;

(ii) for all i and any Ãi, there exists ãi ∈ Ãi, such that
(
ãi, σ̃

∗
−i
)

is a pure strategy

Nash equilibrium of game G̃ =
(
I, A∗1 × ...A∗i−1 × Ãi × A∗i+1...× A∗n, π

)
.

An outcome a∗ ∈ A is called a commitment equilibrium outcome if there exists a com-

mitment equilibrium that supports a∗ ∈ A, i.e. a∗ =
(
σ∗1
(
A∗−1

)
, ..., σ∗n

(
A∗−n

))
. Denote the

set of all commitment equilibrium outcomes by EC and the set of corresponding commitment

equilibrium payoffs by ΠC .

4.2 Reward, temptation, and punishment

To better describe the structure of a commitment equilibrium, I introduce the concepts of

reward, temptation and punishment actions. Take any commitment equilibrium, let a∗i =

σ∗i
(
A∗−i
)

denote the reward action of player i.

For an outcome a∗ ∈ Ai, an action aTi ∈ Ai is called a temptation in Ai of player i if

πi
(
aTi , a

∗
−i
)
> πi

(
a∗i , a

∗
−i
)
. Define the set of temptations Ti (a

∗|Ai) as:

Ti (a
∗|Ai) =

{
aTi ∈ Ai : πi

(
aTi , a

∗
−i
)
> πi

(
a∗i , a

∗
−i
)}
.

It follows from the definition of commitment equilibrium that if a∗ is an outcome supported

by a commitment equilibrium (A∗, σ∗), then none of the players has a temptation in A∗i ⊆ Ai.
In other words, Ti (a

∗|A∗i ) = ∅ for all i. Obviously, a∗ is a Nash equilibrium outcome if and

only if none of the players has a temptation in Ai.
A commitment equilibrium can include not only actions that are played along the equi-

librium path but also punishment actions that deter profitable deviations from the intended

outcome. Let APi = A∗i \ {a∗i } and aPi ∈ APi denote a punishment set and a punishment

action, respectively. Depending on the payoff function and the outcome that the equilibrium

intends to support, players may need to use different punishments against different devia-

tions. However, even one punishment may give the players a powerful device that allows
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them to coordinate on better outcomes. Of course, APi may be empty for one or all players.

In the latter case, a commitment equilibrium outcome will coincide with a NE outcome, as

Proposition 1 will demonstrate.

Therefore, the intuition behind commitment equilibria is the following. On the one hand,

players want to exclude all temptations from their action space when they choose to restrain

their sets of available actions. On the other hand, since they cannot promise to play the

reward actions at the action stage, the players need to include some actions that can be

used as punishments should other players deviate. To determine under what conditions the

chosen punishments can deter other players from deviating, we need to define and analyze

the subgames induced by players’ choices at the commitment stage.

4.3 Relation to Nash equilibrium

I now show that any NE outcome can be supported by a commitment equilibrium. Take any

Nash equilibrium. Suppose that at the commitment stage all players choose their NE action,

excluding all other actions from their sets. At the action stage, there are no profitable

deviations since there is only one action available to play. For this to be a commitment

equilibrium, we need to show that there are no deviations available at the commitment

stage. But this result follows almost immediately. Indeed, if all but one player chose their

NE action, then the remaining player cannot choose any other subset and find it profitable

to deviate by doing so. To be complete, I must show that the deviator’s payoff attains

its maximum on any subset. This requires assuming that the payoff functions are upper

semi-continuous and the action subsets are compact, which was a part of the construction’s

definition.

Commitment equilibrium is a coarsening concept. Any Nash equilibrium outcome can

be supported by a commitment equilibrium in which players restrict their subsets of actions

at the commitment stage to a singleton. If one player fails to do so and leaves her action set

unconstrained, the other player might find it beneficial to constrain himself to playing his

Stackelberg action, i.e. the action that maximizes his payoff subject to his opponent’s best

response.

The main question of this paper, however, is whether commitment equilibria can achieve

better (or worse) payoffs compared to NE outcomes. It turns out that the number of actions

that the players keep at the commitment stage is a key factor that determines what outcomes

can be supported in a commitment equilibrium. It is not sufficient to exclude deviations

that will be profitable. Players have to have the ability to carry out punishments in order

to motivate other players not to deviate at the commitment stage. The next proposition
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formalizes this idea.

Proposition 1 (To get a carrot, one needs to publicly carry a stick) Suppose

at stage 0 players can only choose subsets Ai that include only one element, i.e. Ai =

{Ai : |Ai| = 1}. Then commitment at stage 0 does not produce new equilibrium outcomes,

i.e. EG = EC.

Proof. The proof shows that if a0 is not a NE outcome, then it cannot be a commitment

equilibrium outcome in the case when |Ai| = 1. If a0 is not a NE, then there exists a player

j and an action a′j such that πj
(
a0j , a

0
−j
)
< πj

(
a′j, a

0
−j
)
. Suppose a0 is in fact a commitment

equilibrium. Since for all i, |Ai| = 1, it holds that σ0
i

({
a0j
}
,
{
a0−j
})

= σ0
i

({
a′j
}
,
{
a0−j
})

=

a0i . But then

πj
(
a0
)

= πj
(
a0j , a

0
−j
)
< πj

(
a′j, a

0
−j
)

= πj
(
σ0
1, ..., σ

0
j−1, a

′
j, σ

0
j+1, ..., σ

0
n

)
,

which violates the first condition of commitment equilibrium. Thus, EG ⊆ EC .

In other words, to support an outcome outside EC , players have to choose more than one

action at the commitment stage. If players want to achieve payoffs outside the NE set, they

have to constrain themselves, but not too much.

4.4 Examples

The following example shows that it is in fact possible to support an outcome that Pareto

dominates the NE one.

Example 1 (Commitment equilibrium that Pareto dominates NE) Consider the fol-

lowing two-by-two game:

C1 C2

R1 1, 1 −1,−1

R2 2,−1 0, 0

Row player has a strictly dominant strategy R2. Column player will respond by playing C2.

Thus, (R2,C2) is the only NE outcome. However, outcome (R1,C1) can be supported by a

commitment equilibrium. Indeed, let A1 = (R1), A2 = (C1,C2). At stage 1, Row player

plays R1 and Column player plays C1 if Row player plays R1. If Row player deviates at

stage 0, Column player punishes with C2. It is easy to verify that this set of strategies is a

commitment equilibrium.

Two things are important in Example 1. First, Row player commits not to use his

dominant action R2. Second, Column player has an ability to punish Row player by playing

13



C2 if she decides to deviate. This punishment must be included at stage 0 and this fact must

be publicly known.

In Example 1, the commitment equilibrium outcome is better for both players than the

unique Nash equilibrium of the original game. The next example shows that the opposite

can be also true: an outcome that is strictly worse for both players than the unique Nash

equilibrium can be supported by a commitment equilibrium.

Example 2 (Commitment equilibrium that is Pareto dominated by NE) Consider

the following three-by-three game:

C1 C2 C3

R1 2, 2 2,−1 0, 0

R2 −1, 2 1, 1 −1,−1

R3 0, 0 −1,−1 −1,−1

Row player has a strictly dominant strategy R1. Column player has a strictly dominant

strategy C1. Thus, (R1,C1) is the unique NE outcome. However, outcome (R2,C2) can be

supported by a commitment equilibrium. Let A1 = (R2,R3), A2 = (C2,C3). At stage 1,

Row player plays R2 and Column player plays C2 if the opponents chose the equilibrium

subsets. They play R3 or C3 otherwise. This set of strategies is a commitment equilibrium

that leads to an outcome that is strictly worse than the unique Nash equilibrium outcome for

both players.

The next example shows that in some cases a player has to have several punishments to

achieve a better equilibrium outcome.

Example 3 (To get the carrot, one may need several sticks) Consider the following

three-by-three game:

C1 C2 C3

R1 0, 0 0,−1 −1, 0

R2 −1, 3 1, 1 0, 2

R3 −1, 3 0,−2 2,−1

Column player has a dominant strategy C1. Row player will respond by playing R1. Thus,

(R1,C1) is the unique NE outcome. However, outcome (R2,C2) can be supported by a com-

mitment equilibrium. Let A1 = (R1,R2,R3), A2 = (C2). At stage 1, Row player plays R2 if

Column player chose A2, R3 if Column player chose C3 or {C2,C3} and R1 otherwise. Col-

umn player plays C2. This set of strategies is a commitment equilibrium. Note that (R2,C2)

14



can be supported by an equilibrium only when Row player is able to include all three actions

at stage 0.

Thus, to support an outcome outside the NE set, players must include at least two actions

in their subsets at the commitment stage. In some cases, players have to include multiple

punishments. One punishment may be effective and credible against one deviation, another

may be effective and credible against other deviations.

5 Subgame supermodular games

5.1 Definitions

Proposition 1 showed that to support an outcome outside of the set of NE outcomes, at least

one of the players has to announce more than one action at the commitment stage. Since

some other player can deviate to a subset that includes more than one action, a subgame

induced by such deviation, in principle, may not possess a pure-strategy Nash equilibrium,

which will violate the second requirement of a commitment equilibrium. Thus, to guarantee

the existence of a commitment equilibrium that can support other than NE outcomes, we

need to make sure that a pure-strategy Nash equilibrium exists in any subgame following

the commitment stage.

There are two approaches in the literature that establish the existence of pure-strategy

equilibria. The first approach derives from the theorem of Nash (1950). The conditions

of the theorem require the action sets be nonempty, convex and compact, and the payoff

functions to be continuous in actions of all players and quasiconcave in its own actions.

Reny (1999) relaxed the assumption of continuity by introducing an additional condition on

the payoff functions known as better-reply security. The second approach was introduced

by Topkis (1979) and further developed by Vives (1990) and Milgrom and Roberts (1990),4

among others. They proved that any supermodular game has at least one pure-strategy

Nash equilibrium.

The first approach requires the action space be convex, while the second approach places

no such restrictions. Even if the unconstrained action space was convex, players could choose

a non-convex subset at the commitment stage. As the result, there may exist a subgame that

has no pure-strategy Nash equilibria. Therefore, to guarantee the existence of an equilibrium

in any subgame, we will follow the second approach and focus our attention on supermodular

games.

4Migrom and Roberts (1990) lists a number of economic models that are based on supermodular games.
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Game G is called supermodular if for every player i, πi has increasing differences in

(ai, a−i) .
5 Game C(G) is called subgame supermodular if any subgame induced by a uni-

lateral deviation at the commitment stage is supermodular. It is easy to show that C(G)

is subgame supermodular if and only if G is supermodular. First, suppose that C(G) is

subgame supermodular. Consider a subgame in which players did not restrict their actions

in the first stage. By definition, this subgame is supermodular, therefore G is supermodular.

Now, suppose that G is supermodular, consider any subgame of C(G). For any non-empty

compact subsets Ai the payoff functions πi still have increasing differences (See Topkis,

1979). Therefore, C(G) is subgame supermodular. The existence of a commitment equilib-

rium follows from the fact that game G has a pure-strategy Nash equilibrium since it is a

supermodular game.

5.2 Single-action deviation principle

To prove that a collection of restricted action sets together with a profile of proposed actions

form a subgame perfect equilibrium, we need to show that no profitable deviation exists. The

absence of profitable deviations at the action stage is easy to establish. The only condition

we need to verify is to check if the players excluded all temptations from their action sets.

The commitment stage is more involved since a player can possibly deviate to any subset of

the unrestricted action set. Luckily, the following result demonstrates that it is sufficient to

check if there exists a profitable deviation to subsets that includes only one action.

Lemma 1 An outcome a∗ from a collection of restricted action sets A∗ can be supported

by a commitment equilibrium if and only if no player can profitably deviate to a singleton.

Formally, for each player i and each her action ai, there exists an equilibrium outcome ã in

a subgame induced by sets Ai = {ai} and A∗−i such that πi (ã) ≤ πi (a
∗).

Proof. If a player can profitably deviate to a singleton at the commitment stage, then

the original construction is not a commitment equilibrium. Suppose now that a player

can profitably deviate to a set that includes more than one action. Then there exists an

equilibrium in the subgame that is induced by the deviation that gives the player a higher

payoff. Suppose instead of deviating to the set the player chooses only the action that is

played in that equilibrium. It is easy to see that this outcome will still be equilibrium.

This player does not have any deviations and the other players can still play the same

equilibrium actions: elimination of irrelevant actions cannot generate profitable deviations

5A function f : S × T → R has increasing differences in its two arguments (s, t) if f (s, t) − f (s, t′) is
increasing in s for all t ≥ t′.
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in this subgame. Thus, if there exists a profitable deviation to a set, then a profitable

deviation to a singleton has to exist.

Thus, to find commitment equilibrium outcomes, it is enough to consider deviations to

singletons. To do that, it is convenient to work with best response functions defined for

subgames induced by deviations at the commitment stage.

5.3 Subgame best response

Suppose at the commitment stage player i chose a subset of actions Ai. If player i follows

a commitment equilibrium strategy, then she must choose an action from her subset that

maximizes her payoff in the subgame. Formally, if the other players play a−i ∈ A−i, then

her equilibrium strategy has to choose an action σi (A−i) ∈ BRi (a−i|Ai), where:

BRi (a−i|Ai) = Arg max
ai∈Ai

πi (ai, a−i) .

I will call BRi (a−i|Ai) player ı́’s subgame best response. Note that BRi (a−i|Ai) is a standard

best-response correspondence of player i in game G.

Several properties of subgame best responses follow from continuity of the payoff func-

tions. By the Maximum Theorem of Berge (1979), the subgame best response BRi (a−i|Ai)
is non-empty, compact-valued and upper semi-continuous for any nonempty set Ai. If game

G is supermodular, then in addition to these properties, the subgame best response is non-

decreasing (Topkis, 1979).

Based on the continuity of the subgame best-response, we can analyze the relation

between subgame best responses for unrestricted and restricted action sets. Denote by

BRU
i (a−i) the subgame best response for an unrestricted set. Consider a restricted subgame

best response for a set Ai.

First, suppose that Ai includes an interval [ai, ai] ∈ Ai that belongs to the image of the

unrestricted subgame best response BRU
i (a−i). Then for any interior point of this interval

ai ∈ (ai, āi), the inverse images of the restricted and unrestricted subgame best responses

coincide: BR−1i (ai |Ai) = BR−1i (ai |Ai). Figure 1 illustrates this property for the case of

a differentiated Bertrand duopoly with linear demand functions.6 The black line shows the

unrestricted subgame best response for Firm 1, i.e. it shows what price p1 Firm 1 should

charge if Firm 2 charges price p2. If the demand function is linear, then the unrestricted

subgame best response function is linear as well. Suppose Firm 1 keeps an interval of prices[
pL1 , p

H
1

]
in its menu. Then for any price p1 that in the interior of this interval, the restricted

and unrestricted subgame best responses coincide.

6See Appendix for the description of the model.
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Figure 1: Firm 1’s restricted and unrestricted subgame best response I

Second, suppose that two points from the image of the unconstrained subgame best re-

sponse BRi (A−i |Ai) belong to the restricted set Ai but the interval between them (ai, ai)

does not. Then there exists a vector of the competitors’ actions a−i such that both points

of the interval belong to the restricted subgame best response for this vector: {ai; ai} ∈
BRi (a−i |Ai) and the agent is indifferent between playing either of them πi (ai, a−i) =

πi (ai, a−i). Figure 2 illustrates this result for the differentiated Bertrand duopoly with

linear demand functions. Suppose that Firm 1 kept two prices pL1 and pH1 but excluded the

interval between them at the commitment stage. Then, there exists a price pi2 such that if

Firm 2 announces this price, Firm 1 will be indifferent between charging prices pL1 and pH2 .

The isoprofit crossing points
(
pL1 , p

i
2

)
and

(
pH1 , p

i
2

)
illustrates this fact.

5.4 Subgame equilibrium response

For games with two players it is enough to analyze restricted subgame best responses. Indeed,

it is enough to check that the equilibrium action of the player maximizes her profit subject to
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Figure 2: Firm 1’s restricted and unrestricted subgame best response II

the fact that the opponent plays his restricted subgame best response. Formally, an outcome

a∗ = (a∗1, a
∗
2) ∈ A1 × A2 can be supported by a commitment equilibrium if and only if for

each player i and her action ai, it holds that πi (ai, ã−i) ≤ πi (a
∗) where ã−i ∈ BR−i

(
ai|A∗−i

)
.

To analyze games with three or more players, looking at best responses is not enough.

We need to find a new equilibrium in each subgame induced by a possible deviation. Since

more than one player will react to the deviation, the subgame best responses have to take

into account not only the action of the deviator but also the reaction of the other players

to this deviation. To take this into account, we define a subgame equilibrium response as

a function that for each possible deviation of player i defines an equilibrium response of

her opponents. Formally, function ER−i (ai|A−i) = a−i, where (ai, a−i) is an equilibrium

of the subgame for restricted sets Ai = {ai} and A−i. If there are several equilibria in

this subgame, ER−i chooses the one for which πi (ai, a−i) is smallest. Using the subgame

equilibrium response function, we can formulate a necessary and sufficient condition for a
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commitment equilibrium.

Proposition 2 A collection of restricted sets A∗i , i = 1, ...n can support an outcome a∗ ∈ A∗

by a commitment equilibrium if and only if for each agent i and action ai, πi
(
a i, ER−i

(
ai|A∗−i

))
≤

πi
(
a∗i , a

∗
−i
)
.

Proof. If the inequality does not hold for some ai, then choosing ai at the commitment

stage is a profitable deviation for player i. So, we need only to show that the reverse is true.

By Lemma 1, it is enough to show that no profitable deviation to a singleton exists. Suppose

it does and ai is such a deviation. Then in the subgame induced by this deviation there is

an equilibrium in which the opponents of the deviator play a−i = ER−i
(
ai|A∗−i

)
. But since

πi (ai, ER−i (ai|A∗i )) is less than the equilibrium payoff for any ai, this deviation cannot be

profitable.

Proposition 2 can be restated using the notion of a superior set. For each player i define a

superior set as Si (x) = {a ∈ A : πi (a) > πi (x)}. Then an outcome a∗ ∈ A can be supported

by a commitment equilibrium if and only if for all i the intersection of Si (a
∗) and the graph

of ER−i (ai |A−i) is empty. The fact we just stated illustrates the role the commitment stage

plays. For a given outcome a ∈ A, the superior set Si (a
∗) is fixed but the best response

equilibrium depends on the chosen restricted sets. To support a commitment equilibrium,

the players have to chose a collection of restricted action sets such that the graph of the

resulting equilibrium response does not overlap with the superior set.

5.5 Credibility of punishment

For a subgame supermodular game, the subgame best response is a nondecreasing corre-

spondence. This fact implies that ER−i (ai|A−i) is a nondecreasing function for any A−i.

Consider the incentives of player i to play an outcome a ∈ A as a commitment equilibrium.

Suppose he decides to deviate by playing a′i > ai. This deviation will not be profitable if

πi (a
′
i, ER−i (a

′
i, A−i)) ≤ πi (a). The same equality should hold if the deviator decides to

increase its action. Thus, the payoff function cannot increase or decrease in all its arguments

around the commitment equilibrium point. Since the equilibrium response function is non-

decreasing, only those outcomes for which the temptation set for each player lies below the

reward action, i.e. Ti (ai|Ai) ≤ ai for all i, can be supported by a commitment equilibrium.

For a Bertrand oligopoly with differentiated products this property holds if the firms

want to support higher than NE prices. Indeed, when the prices exceed the NE, the profit

of a potential deviator will increase if he reduces its price but decrease if his competitors

decide to do so.
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Cournot duopolies,7 however, will violate this property. Suppose the firms want to sup-

port a higher than monopoly price. To do so, they need to produce less. Thus, the deviator’s

profit will increase if he increases his output. To punish him, the firms have to increase their

output further, which will drive the price down. However, their best response to an increase

in total output is to decrease their own. Thus, in Cournot oligopolies, punishments that

could have supported a high price are not credible.

6 Stackelberg set

This subsection shows that there is, in fact, a set of payoff profiles that contains Pareto

efficient payoffs that can be supported by a commitment equilibrium. To define this set, we

need to use the concept of Stackelberg outcomes. An outcome aLi is called a Stackelberg

outcome for player i, if πi
(
aLi
i , ER−i

(
aLi
i |A−i

))
≥ πi (ai, a−i) for any ai ∈ Ai. This outcome

corresponds to a subgame perfect equilibrium in the following modification of game G: player

i moves first; the rest of the players move simultaneously and independently of each other

after observing the action of player i. Similarly to a Nash equilibrium outcome, it is easy

to establish that a Stackelberg outcome for any player i can be supported by a commitment

equilibrium. This equilibrium would prescribe that player i should choose their equilibrium

action only at the commitment stage, while the rest of the players keep their action space

unrestricted. If all players do that, then none will have an incentive to deviate either at the

commitment stage or at the action stage.

Define the payoff of player i that corresponds to a Stackelberg outcome by πLi
i . The

Stackelberg set L is then defined as:

L =
{
a ∈ A: πi (a) ≥ πLi and Ti (a|Ai) ≤ ai for all i

}
.

The previous literature has shown that the Stackelberg set L for a class of games is not

empty (Amir and Stepanova (2006) and Dowrick (1986)). Figure 3 shows the Stackelberg

set for the Bertrand duopoly with differentiated products and linear demands.

The next proposition shows that any outcome from the Stackelberg set can be supported

by a commitment equilibrium if the players have an action that can serve as a credible

punishment. The proof of the proposition is constructive.

7Generically, a Cournot oligopoly with three or more firms is not a supermodular game. However, it may
become one under a set of reasonable assumptions placed on the market demand and cost functions (see,
Amir, 1996). The argument will still be true for games that satisfy these assumptions.
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Proposition 3 Suppose for each player i, the payoff function πi is increasing in all a−i.

Then an outcome a∗ ∈ L can be supported by a commitment equilibrium if for any i there

exists an action aPi satisfying πi
(
aPi , a

∗
−i
)

= πi
(
a∗i , a

∗
−i
)

such that aPi ≤ BRi

(
a∗−i |Ai

)
.

Proof. Consider the following set of strategies. At the commitment stage each player

includes in A∗i the following elements: a∗i , a
P
i and all actions below aPi . To prove that a∗ can

be supported by a commitment equilibrium with these restricted sets, it is enough to show

that for each player i the graph of the equilibrium best response function and the superior

set do not overlap.

First, consider the restricted subgame best responses. Based on the properties of the

restricted subgame best response established in Section 4.3, we can conclude that for a−i <

aP−i, the best response functions coincide. Then the restricted best response is equal to aPi

until a∗−i. At a∗−i the player is indifferent between playing aPi and a∗i . Finally, for a−i > a∗−i,
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player i will be playing a∗i . Thus, the equilibrium response function will be the following: for

ai ≥ a∗i , the other players will play a∗−i, for ai < a∗i , they will play aP−i until ai ∈ BRi

(
aP−i|Ai

)
and ER−i (ai|A−i) otherwise.

Since a∗ ∈ L, the superior set of player i belongs to the superior set constructed for

the Stackelberg outcome for player i, which in turn does not overlap with the unrestricted

equilibrium response function. For ai < a∗i the graph of the restricted equilibrium responses

is bounded from above by the unrestricted equilibrium response since aPi ≤ BRi

(
a∗−i|Ai

)
.

Therefore, we need to check that there are no overlaps for ai > a∗i . However, since the

temptation set lies below a∗i , such overlaps cannot exist.

The proposition shows that the punishment action has to satisfy the following property.

Conditional on the fact that all the opponents play the reward action, the player has to

be indifferent between playing his reward action and playing the punishment action. If a

deviator follows his temptation and includes an action from the temptation set, the other

players will execute the punishment, which precludes the deviator from receiving any benefits

from not choosing the reward.

7 Concluding comments

Motivated by pricing practices in the airline industry, this paper shows that in a competitive

environment, agents may benefit from committing not to play certain actions. For the

commitment equilibrium construction to work, all players should have commitment power

and be able to play several actions after the commitment stage. The main intuition of the

paper is the following: to get the reward, the players need to exclude all temptations but

keep punishments to motivate their opponents. Although the model is simple, its intuition

can explain the otherwise puzzling menu structure of airline fares.

The airline industry plays an important role in the U.S. and world economy. It generates

more than 10 million American jobs and 5 percent of the U.S. gross domestic product and

nearly $1.5 trillion in annual economic activity. Although the paper was motivated by

airlines, the results developed in this paper can shed some light on pricing patterns in other

industries too. For example, DellaVigna and Gentzkow (2017) documents a nearly uniform

pricing in U.S. retail chains. Typically, a chain’s headquarter or regional offices give their

stores only a coarse grid of prices (e.g. regular price, sale price, and clearance price) and

let the stores decide which one of them to choose. As a result, in the data, we see nearly

uniform prices within that do not respond to local demand factors. This paper provides one

of plausible explanations to this phenomenon. Retail chains can get more from giving less

price flexibility to their stores.
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It may seem that the theory developed in the paper is at odds with the fact that airlines

use coarse pricing in monopoly markets as well. There are two possible arguments that could

counter this criticism. First, separating pricing from revenue management may alleviate the

Coase conjecture price dynamics associated with durable goods. Second, empirically, we do

see that the lowest fares from the menus are offered significantly more frequently in monopoly

markets than in duopoly markets, which is again consistent with this paper’s analysis. Of

course, there could be alternative explanations to this empirical observation. An in-depth

empirical investigation is required but it is outside the scope of this paper.

There are several interesting extensions that could be further investigated. First, the

model assumed that the action stage was played only once. It is interesting to see what the

players can achieve when they can play the game a finite number of times. The commitment

stage in this case may provide punishments that players execute not only after deviations at

the commitment stage but also following deviations at the preceding action stages. Second,

the trade-off becomes more complicated when there is some uncertainty that is resolved

between the commitment and action stages. In this case, at the commitment stage the

players do not know the exact punishment that they will need to include and may end up

including a non-credible punishment or a temptation. Therefore, there is always a probability

that the award action will not be an equilibrium at the action stage along the equilibrium

path. The third extension is more technical. Renou (2009) shows an example of a game

in which a mixed strategy Nash equilibrium does not survive in the two-stage commitment

game. Thus, the question is which mixed strategy equilibria can and which cannot be

supported by a commitment equilibrium.
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8 Appendix: Bertrand duopoly with differentiated prod-

ucts

To illustrate the idea of a commitment game, consider the differentiated Bertrand duopoly

model with linear demand functions. Suppose two symmetric firms (i = 1,2) produce differ-

entiated products. The demand for each product depends both on its price and the price of

the competitor in a linear way:

q1 (p1, p2) = 1− p1 + αp2,

q2 (p1, p2) = 1− p2 + αp1,

where α ∈ (0, 1) is the parameter that characterizes the degree of products’ substitutability:

the higher is α, the more substitutable are the products.

If firms set their prices simultaneously and independently, then there exists a unique

Nash equilibrium in which both firms charge the following price:

pNE1 = pNE2 =
1

2− α
.

As a result, both firms receive profits equal to πNE1 = πNE2 = 1
(2−α)2 .

It is easy to see that this pair of profits does not lie on the Pareto frontier. In other

words, if both firms decide to increase their price by a small amount (ε > 0), then both

profits will increase:

π1 = π2 =

(
1− (1− α)

(
1

2− α
+ ε

))(
1

2− α
+ ε

)
=

1

(2− α)2
+

α

2− α
ε−(1− α) ε2 >

1

(2− α)2

for small ε > 0.

Thus, if the firms could agree to coordinate their actions, they could do better. Yet,

it is clear that neither firm unilaterally has an incentive to declare it will charge the profit

maximizing price pM1 = pM2 = 1
2(1−α) . To see why this pair of prices cannot be a Nash

equilibrium, consider the figure.

The figure depicts the isoprofit curves for each firm corresponding to the prices that

maximize the firms’ joint profit. These isoprofits touch each other at
(

1
2(1−α) ,

1
2(1−α)

)
, the

point that maximizes the firms’ joint profit. Suppose firm 1 knows that firm 2 will charge

pM2 . If firm 1 charges pM1 , then it gets πM1 = 1
4(1−α) . However, if firm 1 charges a different

price, in particular, any price in the range
(
pP1 , p

M
1

)
, then its profit will be strictly higher

than πM1 . In other words, firm 1 has a temptation to deviate from the price it is supposed
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Figure 4: Differentiated Bertrand Duopoly. How to Support a Joint-Profit Maximizing
Outcome

to charge and charge something lower. Unless firm 1 can commit not to charge prices from

the interval
(
pP1 , p

M
1

)
, the pair of prices

(
pM1 , p

M
2

)
cannot be an equilibrium.

Suppose now that firms have ability to restrain themselves independently of each other.

To be more precise, suppose that firms choose a subset of their prices first. We saw that firm

1 can profitably deviate if it charges any price from
(
pP1 , p

M
1

)
. Therefore, in an equilibrium it

needs to restrain itself and exclude all prices from that interval. However, it has an incentive

to cheat (a “temptation”). Therefore firm 2 has to be able to punish firm 1 if it includes

prices from that interval. Hence, firm 2 has to choose not only price pM2 that it is supposed

to play in an equilibrium but also some other prices that it will use as punishments should

firm 1 not commit to exclude prices in the interval
(
pP1 , p

M
1

)
.

For reasons discussed in the main text, it is sufficient in this case for each firm to choose

just two prices: the pair of prices that will be played along the equilibrium path
(
pM1 , p

M
2

)
and two prices that will be used as punishments, namely pP1 and pP2 . To see why committing

to just two prices in an initial stage will work, suppose firm 1 decides to deviate and restrains

itself to some other price. It is easy to verify that firm 2 will charge pM2 if firm 1 charges any
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price higher than pM1 . If firm 1 charges any price lower than pM1 , then firm 2 should choose

pP2 . Thus, firm 1 cannot benefit from a deviation given firm 2 commits to
{
pM2 , p

P
2

}
since

the isoprofit of firm 1 lies to the north of firm 2’s optimal response. Perhaps, however, firm

1 could benefit from choosing more than one price at the commitment stage? It turns out

that no matter what subset of prices the firm chooses, there will always exist a pure-strategy

Nash equilibrium in the corresponding subgame in which firm 2 will play either pM2 or pP2 .

In neither case, as we already have seen, can firm 1 benefit if it deviates.

Thus, in this widely studied game, if firms can restrain themselves independently of each

other, they can coordinate on the outcome that maximizes their joint profit.
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