Getting More from Less Independent Simultaneous Self-Restraint Games

John Lazarev

Stanford GSB

September 2, 2010

John Lazarev (Stanford GSB)

Getting More from Less

09/02/2010 1 / 23

- Independent Simultaneous Self-Restraint (ISSR) Games (Today)
- Application of ISSR games to airline pricing (In process)
 - Descriptive evidence on airline pricing
 - Structural model of airline prices/fare availability

> < ≣ > ≣ < ⊃ < ⊂ 09/02/2010 3 / 23

イロト イヨト イヨト

To get a **reward** (p_i^H) , players choose a set of **punishments** (p_i^L) to motivate other players to get rid of their **temptations** (p_i^M) .

$$\begin{array}{c|c|c|c|c|c|c|c|c|c|} & p_2^H & p_2^M & p_2^L \\ \hline p_1^H & (15,15) & (5,20) & (1,11) \\ \hline p_1^M & (20,5) & (10,10) & (6,8) \\ \hline p_1^L & (11,1) & (8,6) & (5,5) \end{array}$$

- No restrictions on A_i
- 2 Ability to commit to A_i
- Simultaneity of moves
- Public knowledge of A_i

Related literature

- Strategic players may benefit from reduced flexibility (e.g., Stackelberg (1934) and Schelling (1960) by moving first)
 - Reduced flexibility is one-sided, commitment to a single action
- Contracts may serve as a mutual commitment device not to play certain strategies (e.g., Hart and Moore (2004) and Bernheim and Whinston (1998))
 - Mutual cooperation is explicit and facilitated by contracts
- Cooperation can be supported in repeated games when players can sufficiently punish deviators (e.g., Abreu, Pearce, and Stacchetti (1990) and Fudenberg and Maskin (1986), among others)
 - Cooperation is supported by repeated interactions of sufficiently patient players

Image: Image:

- Bilateral commitment to convex subsets (Bade, Haeringer, and Renou (2009))
 - Limited ability to facilitate cooperation

- Formal Setup
- ISSR and NE outcomes
- Two results for subgame supermodular games

Game G: one-shot normal form game

- normal-form game ${\it G}=({\cal I},{\cal A},\pi)$
- set of players: $\mathcal{I} = \{1, 2, ..., n\}$
- action spaces: \mathcal{A}_i
- payoff functions: $\pi_i : \mathcal{A}_1 \times \mathcal{A}_2 \times ... \times \mathcal{A}_n \longrightarrow \mathbb{R}$
- outcome: $a \in \mathcal{A}$
- payoff: $\pi(a) \in \mathbb{R}^n$
- solution concept: pure-strategy Nash equilibrium
- set of all NE outcomes: \mathcal{E}_{G}

Game G: one-shot normal form game

- normal-form game ${\it G}=({\it I},{\it A},\pi)$
- set of players: $\mathcal{I} = \{1, 2, ..., n\}$
- action spaces: \mathcal{A}_i
- payoff functions: $\pi_i : \mathcal{A}_1 \times \mathcal{A}_2 \times ... \times \mathcal{A}_n \longrightarrow \mathbb{R}$
- outcome: $a \in \mathcal{A}$
- payoff: $\pi(a) \in \mathbb{R}^n$
- solution concept: pure-strategy Nash equilibrium
- set of all NE outcomes: \mathcal{E}_{G}

Assumptions

- \mathcal{A}_i is a compact set of $\mathbb R$
- π_i is continuous in (a_i, a_{-i})

- two-stage game:
 - Commitment stage: choose a non-empty compact subset: A_i ∈ A_i ⊆ 2^{A_i} \ {∅}. A_i is publicly observed.
 - ② Action stage: each player simultaneously and independently chooses an action a_i ∈ A_i. Actions not in A_i are not permitted.
- solution concept: subgame perfect pure-strategy Nash equilibrium (called ISSR equilibrium)
- set of all ISSR eqm outcomes: \mathcal{E}_{C}

Theorem $\mathcal{E}_G \subseteq \mathcal{E}_C$.

<ロト </p>

Theorem

 $\mathcal{E}_{\mathcal{G}} \subseteq \mathcal{E}_{\mathcal{C}}.$

Theorem

(i) If
$$\mathbb{A}_i = \{A_i : A_i \equiv A_i\}$$
, then $\mathcal{E}_G = \mathcal{E}_C$.
(ii) If $\mathbb{A}_i = \{A_i : |A_i| = 1\}$, then $\mathcal{E}_G = \mathcal{E}_C$.

Thus, to get an outcome outside \mathcal{E}_G :

- players have to constrain their action sets
- players have to choose more than one action

Setup

- ISSR and NE outcomes
- Two results for subgame supermodular games
 - what it is?
 - why we need them?
 - what we can achieve there?

Definitions

(i) Game C(G) is called *subgame supermodular* if any subgame is supermodular.

(ii) Game G is called supermodular if for every player i, π_i has increasing

differences in (a_i, a_{-i}) .

Lemma

C(G) is subgame supermodular if and only if G is supermodular.

Definitions

(i) Game C(G) is called *subgame supermodular* if any subgame is supermodular.

(ii) Game G is called supermodular if for every player i, π_i has increasing

differences in (a_i, a_{-i}) .

Lemma

C(G) is subgame supermodular if and only if G is supermodular.

Theorem

If C(G) is subgame supermodular, then an ISSR equilibrium exists.

In other games, there could exist a subgame induced by a unilateral deviation without pure-strategy eqm

John Lazarev (Stanford GSB)

Getting More from Less

09/02/2010 12 / 23

• • • • • • • • • • • •

What cannot be supported

Theorem

Suppose that π_i is strictly quasi-concave in a_i for both *i*. Suppose $a^* = (a_1^*, a_2^*) \in A_1 \times A_2$ can be supported by an ISSR equilibrium. Then (*i*) if $a_i^* < BR_i(a_{-i}^* | A_i)$, then $a_{-i}^* \leq BR_{-i}(a_i^* | A_{-i})$; (*ii*) if $a_i^* > BR_i(a_{-i}^* | A_i)$, then $a_{-i}^* \geq BR_{-i}(a_i^* | A_{-i})$, where $BR_i(a_{-i} | A_i) = Arg \max_{a_i \in A_i} \pi_i(a_i, a_{-i})$.

Intuition: To support an ISSR eqm, a player's incentives to deviate should coincide with other players' incentives to punish. Otherwise, profitable deviations exist.

・ロン ・聞と ・ほと ・ ほと

Supermodular games with two players

Cournot vs. Bertrand oligopolies: an informal comparison

Relative to a NE outcome	Bertrand	Cournot
Pareto superior outcome (reward)	higher <i>p</i>	lower q
Temptations	lower p	higher <i>q</i>
BR to a temptation	decrease <i>p</i>	decrease q
Effective punishment	lower p	higher <i>q</i>
Punishment is	credible	NOT credible

Thus, firms cannot get more from less in Cournot games.

Supermodular games with two players

ISSR equilibria with multiple punishments

Definition

An outcome (a_i^L, a_{-i}^F) is called a Stackelberg outcome for player *i*, if (i) $a_i^F \in BR_{-i}(a_i^L | A_{-i})$ and (ii) $\pi_i(a_i^L, a_i^F) \ge \pi_i(a_i, a_{-i})$ for any $a_i \in A_i$ and $a_{-i} \in BR_{-i}(a_i | A_{-i})$.

Definition

$$L = \left\{ \mathbf{a} \in \mathcal{A}: \ \pi_{i}\left(\mathbf{a}\right) \geq \pi_{i}^{L} \text{ for both } i \ \right\}, \text{ where } \pi_{i}^{L} = \pi_{i}\left(\mathbf{a}_{i}^{L}, \mathbf{a}_{-i}^{F}\right)$$

Lemma

L is not empty.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ISSR equilibria with multiple punishments

Theorem

Suppose π_i is strictly quasi-concave in a_i and increasing in a_{-i} . Then an outcome $a^* \in L$ can be supported by an ISSR equilibrium if and only if for both i there exists an $a_i^P \neq a_{-i}^*$ satisfying $\pi_i (a_i^P, a_{-i}^*) = \pi_i (a_i^*, a_{-i}^*)$.

Intuition: In an ISSR equilibrium, players have to be indifferent between playing their reward and punishment actions. Otherwise, small deviations are profitable.

Example

- two firms produce differentiated products
- linear demand systems

$$\begin{array}{rcl} q_1 \left(p_1, p_2 \right) &=& 1 - p_1 + \alpha p_2 \\ q_2 \left(p_1, p_2 \right) &=& 1 - p_2 + \alpha p_1 \\ \alpha &\in& (0, 1) \end{array}$$

• costs are normalized to zero

John Lazarev (Stanford GSB)

E ∽ Q ⊂ 09/02/2010 18 / 23

John Lazarev (Stanford GSB)

E ∽ Q ⊂ 09/02/2010 19 / 23

John Lazarev (Stanford GSB)

≣ ৩৭৫ 09/02/2010 20/23

Supermodular games with two players

ISSR equilibria with multiple punishments

John Lazarev (Stanford GSB)

09/02/2010 21 / 23

• For continuous games:

- ISSR equilibria can support outcomes that are Pareto inferior to NE
- ISSR equilibria may not be able to support mixed strategy NE
- ISSR equilibria may exist even if G has no pure-strategy NE
- Properties of BR: Indifference principle
- For supermodular games:
 - It is sufficient to prevent deviations to singleton subsets
 - ISSR equilibria with one punishment: a necessary and sufficient condition
 - ISSR equilibria: when having more punishments doesn't help
 - A partial characterization of the set of equilibrium payoffs

Extensions

- N Players
 - A punishment of N-1 players is more severe than a punishment of one player.
 - If one player punishes, the others have more incentives to punish (e.g. price war).
 - Different punishments may be used for punishing different players. In asymmetric equilibria, different players may use different punishments.
 - There could be multiple sets of punishments that will support the same outcome.
- Stochastic payoffs
 - Being first or being right: commitment vs. flexibility
- Multiple stages
 - Multiple repetition of commitment and/or action stage