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Abstract

This paper studies how a firm’s ability to price discriminate over time affects production,

product quality, and product allocation among consumers. The theoretical model has forward-

looking heterogeneous consumers who face a monopoly firm. The firm can affect the quality

and quantity of the goods sold each period. I show that in the model the welfare effects of

intertemporal price discrimination are ambiguous. I use this model to study the time paths of

prices for airline tickets offered on monopoly routes in the U.S. Using estimates of the model’s

demand and cost parameters, I compare the welfare travelers receive under the current system

to several alternative systems, including one in which free resale of airline tickets is allowed. I

find that free resale of airline tickets would increase the average price of tickets bought by leisure

travelers by 54% and decrease the number of tickets they buy by 10%. Their consumer surplus

would decrease by only 16% due to a more efficient allocation of seats and the opportunity to

sell a ticket on a secondary market.
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1 Introduction

This paper estimates the welfare effects of intertemporal price discrimination using new data on

the time paths of prices from the U.S. airline industry. Who wins and who loses as a result of

this intertemporal price discrimination is an important policy question because ticket resale among

consumers is explicitly prohibited in the U.S., ostensibly for security reasons. Some airlines do

allow consumers to ”sell” their tickets back to them, but they also impose fees that can make

the original ticket worthless. Just what motivates these practices is a matter of public debate.1

Economic theory suggests that secondary markets are desirable because they facilitate more efficient

reallocations of goods. Yet the existence of resale markets also would frustrate airlines’ ability to

price discriminate over time, which could potentially decrease overall social welfare.

Theoretically, the welfare effects of price discrimination are ambiguous (Robinson, 1933). I

focus on three channels through which price discrimination can affect social welfare. First, price

discrimination changes the quantity of output sold as some buyers face higher prices and buy less,

while other buyers face lower prices and buy more.2 Second, price discrimination can affect the

quality of the product (Mussa and Rosen, 1978). For instance, a firm may deliberately degrade the

quality of a lower-priced product to keep people willing to pay a higher price from switching to the

lower-priced product (Deneckere and McAfee, 1996). Finally, price discrimination can result in a

misallocation of products among buyers. Since consumers potentially face different prices, it is not

necessarily true that customers willing to pay more for the product will end up buying it.

Empirically, we know little about the costs and benefits of intertemporal price discrimination.3

There are several reasons why there has been little work on this problem. First, there is a lack

of public data. In the airline industry, price and quantity data that are necessary to estimate

demand have been available to researchers only at the quarterly level. Such data do not allow one

to separate intertemporal discrimination for a given seat on a given flight from variation for similar

seats on different days of departure. McAfee and te Velde (2007) is one of the few attempts to

1Consumer advocates speak out against these inflexible policies and question the legality of such practices. If you
buy a ticket, they argue, it’s your property and you should be able to use it any way you want, including giving it to
a friend or selling it to a third party. For examples see Bly (2001), Curtis (2007), and Elliot(2011).

2An increase in total output is a necessary condition for welfare improvement with third-degree price discrimination
by a monopolist. Schmalensee (1981), Varian (1985), Schwartz (1990), Aguirre et al (2010), and others have analyzed
these welfare effects in varying degrees of generality.

3Exceptions include Hendel and Nevo (2011) and Nair (2007).
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use airline data to analyze intertemporal price discrimination. They had a sample of price paths,

but they did not have access to the corresponding quantities of seats sold. I solve this problem by

merging daily price data (collected from the web) with quarterly quantity data using a structural

model.

A second impediment to studying intertemporal price discrimination is that a structural model

of dynamic oligopoly with intertemporal price discrimination would necessarily be too complicated

to estimate. Among other difficulties, one would have to deal with the multiplicity of equilibrium

predictions and account for multimarket contact the presence of which is well documented in the

industry (see e.g. Evans and Kessides (1994)). I avoid these problems by focusing solely on

monopoly routes. Finally, I use institutional details of the way that prices are set in practice in the

industry to simplify the problem even further.

While I do observe the lowest available price on each day prior to departure, I only observe the

quantity of tickets purchased at each price on a quarterly basis. As a result, it would be difficult to

estimate demand and cost parameters directly. Instead, I estimate the parameters of consumers’

preferences indirectly, based on a model of optimal fares. In the model, a firm sells a product to

several groups of forward-looking consumers during a finite number of periods. Consumer groups

differ in three ways: what time they arrive in the market, how much they are willing to pay

for a flight, and how certain they are about their travel plans. The firm cannot identify and

segregate different consumer groups, but is able to charge different prices in different periods of

sale. Aggregate demand uncertainty is not modeled explicitly.4 Under these assumptions, I show

that a set of fares with positive cancellation fees and advance purchase requirements maximizes

the firm’s profit. By contrast, the market-clearing fare without advance purchase requirements

or cancellation fees maximizes the social welfare defined as the sum of the airline’s profit and

consumers’ surplus.

For each value of the unknown parameters, my model predicts a unique profit-maximizing path

of fares as well as the corresponding quantities of tickets sold. I match these predictions with data

collected from 76 U.S. monopoly routes. For every departure date in three quarters, I recorded

4Aggregate demand uncertainty is another reason why an airline facing capacity constraints may benefit from
varying its prices over time (Gale and Holmes, 1993, Dana 1999). Puller et al (2009) found only modest support for
the scarcity pricing theories in the ticket transaction data, while price discrimination explained much of the variation
in ticket pricing.
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all public fares published by airlines for six weeks prior to departure. Since quantity data are not

publicly available, I use the model of optimal fares to predict quantities sold at each price level in

each period. I then aggregate these predictions to the quarterly level and match them to data from

the well-known quarterly sample of airline tickets. To estimate demand and cost parameters, I use

a two-step generalized method of moments based on restrictions for daily prices, monthly quantities

and the quarterly distribution of tickets derived from the model of optimal fares.

For markets in my data sample, the estimates suggest that, on average, 76% of passengers

travel for leisure purposes. More than 90% of leisure travelers start searching for a ticket at least

six weeks prior to departure. By contrast, 83% of business travelers begin their search in the last

week. Business travelers are willing to pay up to six times more for a seat and they are significantly

less price-elastic. Business travelers tend to avoid tickets with a cancellation fee as the probability

that they have to cancel a ticket is higher.

These estimates allow me to assess the welfare effects of intertemporal price discrimination.

Compared to an ideal allocation that maximizes social welfare, the profit-maximizing allocation

results in a 21% loss of the total gains from trade. To understand to what extent intertemporal

price discrimination contributes to this loss, I use the estimates to calculate the equilibrium sets of

fares for three alternative designs of the market.

The first scenario assesses the potential benefits and costs of allowing unrestricted airline ticket

resale.5 I model resale by assuming that there are an unlimited number of price-taking arbitrageurs

who can buy tickets in any period in order to resell them later. Under this assumption, the profit-

maximizing price path is flat. The welfare effects of a secondary market, however, are ambiguous.

On the one hand, the secondary market increases the quality of tickets and eliminates misallocations

among consumers. On the other hand, the secondary market can – and, for the markets I consider,

does – reduce the total quantity of tickets sold in the primary market. I find that the average price

of tickets bought by leisure travelers would increase from $77 to $118, and the number of tickets

they buy would decrease by 10%. However, business travelers would face an average price decrease

from $382 to $118, with quantity increasing by 49%. The consumer surplus of leisure travelers

would decline by 16%, the consumer surplus of business travelers would increase by almost 100%,

5Recent empirical literature on resale and the welfare effects of actual secondary markets includes Leslie and
Sorensen (2009), Sweeting (2010), Chen et al (2011), Esteban and Shum (2007), Gavazza et al (2011). Ticket resale
is explicitly prohibited in the U.S. airline industry.
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and the airline’s profit would decrease by 28%. Overall, social welfare on the average route would

increase by 12%, even though the total quantity of tickets sold would go down.

In a second scenario, I return to a market without resale and assume that the monopolist is not

allowed to alter the quality of tickets by imposing a cancellation fee but can still charge different

prices in different periods. I find that the monopolist would still discriminate over time but the

equilibrium price path would become flatter, which would reduce misallocations of tickets among

consumers. The average ticket price would go up from $137 to $157. Leisure travelers would benefit

due to the increase in the quality of tickets but would lose from the increase in prices. The net effect

on their consumer surplus would be still positive. Overall, social welfare would slightly increase.

Finally, the third scenario compares the welfare properties of intertemporal and third-degree

price discrimination. Third degree price discrimination implies that the airline can identify the

customers’ types and is able to set different prices to different types. By varying the price over

time, the airline captures more than 90% of the profit that it would receive if third degree price

discrimination was possible. Surprisingly, the estimates show that some customer groups would

prefer third-degree price discrimination to intertemporal price discrimination. Total social welfare

is also higher under third degree price discrimination.

The paper informs three important empirical literatures. First, it contributes to the empirical

price discrimination literature. Shepard (1991) considered prices of full and self service options at

gas stations. Verboven (1996) studied differences in automobile prices across European countries.

Leslie (2004) quantified the welfare effects of price discrimination in the Broadway theater industry.

Villas-Boas (2009) analyzed wholesale price discrimination in the German coffee market. Second,

it connects to empirical studies of durable goods monopoly. Nair (2007) estimated a model of

intertemporal price discrimination for the market of console video games. Hendel and Nevo (2011)

estimated that intertemporal price discrimination in storable goods markets increases total welfare.

This paper arrives at a different conclusion for airline tickets. Finally, there are several related

papers that analyze price dispersion in the U.S. airline industry (Borenstein and Rose, 1994, Stavins,

2001, Gerardi and Shapiro, 2009). To the best of my knowledge, this is the first paper to empirically

estimate the welfare effects of intertemporal price discrimination in the airline industry.

The rest of the paper proceeds as follows. Section 2 gives background information on airline

pricing. Section 3 presents a model of optimal fares. Section 4 describes the data used in the
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analysis. In Section 5, I show how to use the model of optimal fares to infer demand and supply

parameters from the collected data. Section 6 presents the results of estimation. In Section 7, I for-

mally describe the alternative market designs and present the results of counterfactual simulations.

Section 8 concludes.

2 Institutional Background

An airline can start selling tickets on a scheduled flight as early as 330 days before departure. At

any given moment, the price of a ticket is determined by the decisions of two airline departments,

the pricing department and the revenue management department. The pricing department moves

first and develops a discrete set of fares that can be used between any two airports served by the

airline. The revenue management department moves second and chooses which of the fares from

this set to offer on a given day.

The pricing department offers fares with different ”qualities” to discriminate between leisure

and business travelers. High-quality fares are unrestricted. Low-quality fares come with a set

restrictions such as advance purchase requirements (APR) and cancellation fees. To secure cheaper

fares, a traveler typically has to buy a ticket early, usually a few weeks before her departure date. If

her travel plans later change, she may have to pay a substantial cancellation fee, which often could

make the purchased ticket worthless. These restrictions exploit the fact that business travelers are

usually more uncertain about their travel plans than leisure travelers.

Figure 1 gives a snapshot of all coach-class fares that were published by American Airlines’

pricing department for Dallas, TX – Roswell, NM flights departing on March 1, 2011, six weeks

prior the departure. Fares with advance purchase requirements include a cancellation fee of $150.

Fares without advance purchase requirements are fully refundable.

The fact that the pricing department has published a fare does not imply that a traveler will be

able to get that fare on the specific flight. The flight needs to have available seats in the booking

class that corresponds to that fare. How many seats to assign to each booking class in each flight

is the primary decision of the revenue management department.

Figure 2 shows the paths of coach-class prices for flights from Dallas, TX to Roswell, NM on

Tuesday, March 1st, 2011. American Airlines is the only carrier that serves this route; there are
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Figure 1: List of available fares from Dallas, TX to Roswell, NM for 03/01/2011, six weeks before
departure

7



Figure 2: Example Price Path. Route: Dallas, TX - Roswell, NM. Departure Date: 03/01/11

three flights available during that day.

The behavior of ticket prices depicted is representative of monopoly markets in my data. There

are three main stylized facts. First, prices increase in discrete jumps. Second, there are several

distinct times when the lowest price for all flights jumps up simultaneously. As in the figure, these

times typically occur 6, 13 and 20 days before departure. Third, between these jumps, prices are

relatively stable.

This behavior results largely because of the institutional details surrounding the way airlines

set ticket prices. The lowest price of a ticket for a given flight is determined by the lowest fare with

available seats in the corresponding booking class. There are three reasons that the lowest price

of an airline ticket for a given flight may change over time. First, if the number of days before

departure is less than the APR, travelers cannot use that fare to buy a ticket. Less restrictive fares

are usually more expensive, which results in a price increase. If we look at Figure 1 again, we can
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see that the first major price increase occurred 20 days before departure: the price went up from

$138 to $154. This was the day when the advance purchase requirement for the two lowest fares

became binding.

Second, the decision of the revenue management department to open or close availability in a

certain booking class may change the lowest price. Eighteen days before departure, the revenue

management department of American Airlines closed booking class S for flight AA 2705 but kept

booking class G open. As a result, the lowest price for this flight went up from $154 to $211.

Finally, the pricing department can add a new fare, as well as update or remove an existing

one. On very competitive routes, airline pricing analysts monitor their rivals very closely: pricing

departments respond to competitors’ price moves very quickly, often responding on the same day

(Talluri and van Ryzin, 2005). On routes with few operating carriers, the set of fares is usually

stable. For example, during the time period depicted on Figure 2, the pricing department of

American Airlines did not update fares for flights from Dallas to Roswell departing on March

1st, 2011. Changes in prices were caused primarily by APR restrictions or the decisions of the

revenue-management department.

3 The Model of Optimal Fares

To calculate the effect of intertemporal price discrimination on consumer welfare, we need to es-

timate consumers’ demand functions. The demand system is estimated using assumptions about

pricing and the supply side. To recover consumers’ preferences (or, to be more precise, the airline’s

expectations about consumers’ preferences), I develop a model that shows how a set of parameters

reflecting travelers’ preferences transforms into a path of profit-maximizing fares.6

A theoretical model that is able to generate the stylized facts listed in Section 2 has to include the

decision problems of both the pricing and revenue-management departments. The solution of the

pricing department’s problem is a finite set of fares that include advance purchase requirements.

To construct an optimal set of fares, the pricing department has to calculate the value of the

airline’s expected profit for each possible set of fares. This value, in turn, depends on the strategy

6I do not consider a more general problem of finding a profit-maximizing mechanism since the mechanism observed
in the data is implemented through publicly posted prices. This problem has been studied by Gershkov and Moldovanu
(2009), Board and Skrzypacz (2011), and Hoerner and Samuelson (2011), among others.
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of the revenue management department that takes the set of fares as given and updates availability

of each booking class in real time. Another complication comes from the fact that the airline

has to take into account not only direct passengers that travel on a particular route but also

passengers for whom this route is only a part of their trip. I will call them ”direct passengers” and

”connecting passengers”, respectively. The model is initially formulated for a representative origin

and destination and a representative departure date.

3.1 Airline’s problem

Consider a representative market that is defined by three elements: origin, destination and travel

date. The airline is the only producer in the market. It can offer up to C seats on its flights from

the origin to the destination. It flies both direct and connecting passengers. For direct passengers,

the origin is the initial point of their trip and the destination is the final point of their trip. For

connecting passengers, this flight is only a part of their trip.

The airline is selling tickets during a fixed period of time. Advance purchase requirements divide

this period into T periods of sale. At the beginning of the first period of sale, the airline’s pricing

department sets a menu of fares for this market p = (p1, ..., pT ) and for all markets that connecting

passengers fly pj = (pj1, ..., pjT ). The price pt is the price of the cheapest fare that satisfies the

advance purchase requirement for period of sale t. In the empirical application, advance period

requirements observed define five periods of sale: 21 days and more, from 14 to 20 days, from 7 to

13 days, from 3 to 6 days, and less than 3 days before departure.

The revenue management department at each moment of time decides which of the fares that

satisfy the advance purchase requirements to offer for purchase based on the information ξt. Denote

by D̃t (p, ξt) the number of tickets that the airline sells at price pt. Not all passengers that bought

tickets will end up flying. Denote by Q̃t (p, ξT ) the number of seats that that will be occupied

by passengers who bought tickets at price pt. Both D̃t and Q̃t are the solutions of the revenue

management department’s problem.

The airline’s revenue comes from selling tickets and collecting cancellation fees. If a traveler

needs to cancel a ticket, she has to pay a cancellation fee f . The fee f ≥ 0 is taken to be exogenous

because in practice U.S. airlines have only one cancellation fee that applies to all domestic routes.

The airline’s operational cost, ϕ (·), depends on the total number of enplaned passengers. Thus,
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the airline’s profit takes the following form:

π = R̃+
∑
j

R̃j − ϕ

Q̃+
∑
j

Q̃j

 ,

where

R =

T∑
t=1

(
ptQ̃t + min (f , pt)

(
D̃t − Q̃t

))
revenue from direct passengers,

Rj =

T∑
t=1

(
pjtQ̃jt + min (f, pjt)

(
D̃jt − Q̃jt

))
revenue from connecting passengers,

Q̃ =

T∑
t=1

Q̃t the number of seats occupied by direct passengers,

Q̃j =

T∑
t=1

Q̃jt the number of seats occupied connecting passengers from market j.

The pricing department chooses menus of direct fares p and connecting fares pj to maximize

the expected value of the profit function subject to the capacity constraint. Formally, the profit

maximization problem takes the following form:

max
p,pj

E0π s.t. Q̃+
∑
j

Q̃j ≤ C.

The expectation is taken with respect to all information available at the beginning of the first

period of sale.

I will simplify the problem in three steps. First, the constrained optimization problem can be

written as unconstrained using the method of Lagrange multipliers. Let φ (C) denote the value of

the Lagrange multiplier that corresponds to the capacity constraint. Then the unconstrained profit

function takes the following form:

π = R̃+
∑
j

R̃j − ϕ

Q̃+
∑
j

Q̃j

− φ (C)

Q̃+
∑
j

Q̃j − C

 .

The last two components of the profit function represent the economic cost of the airline. The

ϕ (·) term is the operational cost, the φ (·) term is the shadow cost of capacity. Denote by c̃ the

value of the marginal economic cost evaluated at the profit-maximizing level. Then, the solution
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of the original profit maximizing problem coincides with the solution of the following problem:

max
p,pj

E0

R+
∑
j

Rj − c̃ ·

Q̃+
∑
j

Q̃j

 .

The last problem is separable with respect to p and pj , i.e.

E0

R+
∑

Rj − c̃ ·

Q̃+
∑
j

Q̃j

 = E0

[
R− c̃Q̃

]
+
∑
j

E0

[
Rj − c̃Q̃j

]
.

Thus, if the optimal value of the expected marginal cost c̃ is known, then it is sufficient to solve the

profit-maximization problem for direct passengers without looking at the fares set for connecting

passengers or knowing the value of the capacity constraint. The value c̃ can be interpreted in two

ways. First, it reflects the expected marginal revenue of adding an additional unit of capacity to

the market. Second, it is equal to the marginal revenue of flying connecting passengers.

Finally, consider the profit-maximization problem for direct passengers:

max
p

E0

[
R̃− c̃Q̃

]
= max

p
E0

[
T∑
t=1

ptQ̃t + min (f, pt)
(
D̃t − Q̃t

)
− c̃Q̃t

]
.

By the law of iterated expectations, we can rewrite this problem as:

max
p

T∑
t=1

[(pt − c̃)Qt + min (f, pt) (Dt −Qt)] ,

where Qt = E0Q̃t and Dt = E0D̃t. The function Dt is the expected number of tickets that will

be sold at price pt if the pricing department offers the menu of fares p and then the revenue

management department behaves optimally given this menu. The function Qt is the corresponding

expected number of occupied seats.

To calculate the welfare effects of intertemporal price discrimination, we need to know how the

quantity of sold tickets and the number of occupied seats respond to changes in the menu of fares

and the cancellation fee. In other words, we need to know the elasticities of demand with respect

to the prices of all available fares and the cancellation fee. Three limitations of the data do not

allow us to estimate these elasticities directly. The number of occupied seats for each fare pt is not

available for each individual flight or departure date. The data include only a 10% random sample

of the quantity data aggregated to the quarterly level. Second, the data do not record tickets that

were sold but later canceled. Third, it would be hard to find a source of exogenous variation that
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comes from the supply side and would affect the components of the fare menu independently of

each other. The form of the profit function suggests that any variation in the cost function affects

the entire menu of fares in a very specific way. From the pricing department’s point of view, the

value of the expected marginal cost of flying an additional passenger is the same in all periods of

sale. Finally, there is almost no variation in the cancellation fee in the data. Almost all airlines

charged $150 in all domestic markets.

Given these limitations, I follow a different approach. I assume that the market demand defined

by Qt and Dt reflects the optimal decision of strategic consumers whose preferences with respect to

the price and time of purchase depend on a vector of demand parameters θ̃. The vector of demand

parameters θ̃ determines the level of consumer heterogeneity, their willingness to pay for an airline

ticket, their aversion of the imposed cancellation fee. The airline’s pricing department knows the

value of θ̃ and chooses a menu of fares p to maximize the airline’s profit defined by functions Qt and

Dt that in turn depend on θ̃ and c̃. Using daily price data and quarterly aggregated quantity data,

I will recover these parameters assuming that the observed prices maximize the airline’s profit for

these parameters.

A natural way to model the demand functions Dt and Qt would be first to model the revenue-

management problem explicitly. For each realization of aggregate demand uncertainty, the solution

of the revenue-management problem, D̃t and Q̃t, defines the optimal allocation of tickets and seats.

To find this allocation, we would need to find a stochastic process that defines the evolution of

prices. This process would have to be consistent with the travelers expectations and maximize the

airline’s profit given these expectations at the same time. So, we would also need to model travelers’

expectations explicitly as well as how much the travelers know about the remaining capacity on

a given flight in each period of sale. All these assumptions will not be possible to test because

the data contain no information on how far in advance a particular ticket was bought. In fact, no

flight-level quantity data are publicly available.

Since the object of interest are the expected quantities Dt and Qt, I propose a simpler model of

traveler behavior. This model gives a closed form solution that approximates the expected demand

functions Dt and Qt. This approximation captures all relevant features of the data available to us

and thus allow us to make counterfactual predictions under the assumption that the process that

defines aggregate demand uncertainty does not change in the counterfactual scenario.
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3.2 Demand System and Consumer Welfare

This subsection describes how the vector of demand parameters θ̃ determines the relationship

between the expected quantities of sold tickets Dt, the occupied seats Qt, and the menu of offered

fares p. It can be viewed as a micro model of the market demand functions Qt

(
p; θ̃
)

and Dt

(
p; θ̃
)

.

Since these functions by construction represent expected quantities, the model does not allow any

demand uncertainty at the market level.

Types, Arrival and Exit The population of potential direct passengers of size M̃ consists of I

discrete types; types are indexed by i = 1, ..., I. (In the estimation, I assume that I = 2: leisure

and business travelers.) The sizes of different types of potential buyers change over time for three

reasons. First, each period new travelers arrive to the market.7 The mass of new buyers of type

i who arrive at time t is equal to M̃it = λ̃it · γi · M̃ , where γi is the weight of each type in the

population and λ̃it is the type-specific arrival rate. Second, those travelers who bought tickets in

previous periods are not interested in purchasing additional ones. Third, each period a fraction of

travelers who arrived in the previous periods learn that they will not be able to fly due to some

contingency, so they cancel the ticket (if purchased) and exit the market. The probability that a

traveler of type i learns that she will not be able to fly is equal to (1− δi) in every period.

Preferences Travelers know their utilities conditional on flying but are uncertain if they are able

to fly. If a traveler ι of type i buys a ticket in period t, she pays the price pt and, conditional on

flying, receives:

uιit ≡ µi + σi (ειit − ειi0) , (1)

where µi is type-i’s mean utility from flying on this route measured in dollar terms, ειit are i.i.d.

Type-1 extreme value terms that shift traveler ι’s utility in each period, and σi is a normalizing

coefficient that controls the variance of ειit. The error term ειit reflects idiosyncratic customers’

preferences with respect to the time of purchase. They may reflect customers’ tastes with regard to

other characteristics of restricted fares or their idiosyncratic level of uncertainty about their travel

plans. The errors represent the consumer tastes that the airline and researcher do not observe.

7Without this assumption, the profit-maximizing monopolist would forgo the opportunity to discriminate over
time (Stokey, 1979). Board (2008) analyzes the profit-maximizing behavior of a durable goods monopolist when
incoming demand varies over time.
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This coefficient σi captures the slope of the demand curve and hence the price sensitivity across

the population of type-i travelers: the lower the coefficient, the less sensitive are type-i travelers.

The traveler learns all components of their utilities defined in equation (1) at the beginning of the

period she arrived in the market.8

After purchase, the traveler can cancel a ticket. If she cancels a ticket in period t′, she loses

the price she paid, pt, but may receive a monetary refund if the cancellation fee does not exceed

the price. The refund is equal to max (pt − f , 0). Since the refund does not exceed the price of the

ticket, the traveler will cancel her ticket only if she learns that she is not able to fly. If the traveler

doesn’t fly, her utility is normalized to zero.

Travelers are forward-looking and make purchase decisions to maximize their expected utility.

They face the following tradeoff: if they wait, they will receive more information about their travel

plans but may have to pay a higher prices if the airline increases prices over time.

Individual demand Consider the utility-maximization problem of a type-i traveler who is in

the market at time τ . She has T − τ periods to buy a ticket. She buys a ticket at time τ only if

it gives a higher utility than buying a ticket in subsequent periods or not buying a ticket at all. If

she buys a ticket in period τ , then her net expected utility is given by:

[
δT−τi uiτ +Riτ

]
− pτ ,

where ρiτ denotes the expected value of the refund:

ρiτ =
(

1− δT−τi

)
max (pτ − f , 0) .

Suppose the traveler decides to wait until period τ ′. Then with probability
(

1− δτ ′−τi

)
she

learns about a travel emergency and exits the market. With the remaining probability δτ
′−τ
i she

stays in the market. If she buys a ticket, she receives δT−τ
′

i [µi + σi (ειiτ ′ − ειi0)] + ρiτ ′ − pτ ′ . In

this case, her expected utility is equal to

δT−τi [µi + σi (ειiτ ′ − ειi0)] + δτ
′−τ
i (ρiτ ′ − pτ ′) .

8An alternative assumption would be for travelers to learn a component of ειi before each period of sale.Under
this assumption each customer would compare the current value of the term with its expected future values. Under
the original assumpton each customer would compare this value with its actual future values. Qualitatively we would
receive the same results. However, the demand function will not have a closed form solution.
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Thus, the traveler buys a ticket in period τ if the following set of inequalities holds:

δT−τi [µi + σi (ειiτ − ειi0)] + ρiτ − pτ > δT−τi [µi + σi (ειiτ ′ − ειi0)] + δτ
′−τ
i (ρiτ ′ − pτ ′)

for all τ < τ ′ ≤ T and

δT−τi [µi + σi (ειiτ − ειi0)] + ρiτ − pτ > 0.

These inequalities can be rewritten in a more convenient way:

δT−τi µi + ρiτ − pτ
σiδ

T−τ
i

+ ειiτ >
δT−τ

′

i µi + ρiτ ′ − pτ ′
σiδ

T−τ ′
i

+ ειiτ ′ for all τ < τ ′ ≤ T and (2)

δT−τi µi + ρiτ − pτ
σiδ

T−τ
i

+ ειiτ > ειi0.

Market demand for airline tickets To calculate the firm’s expected demand for tickets, we

need to know the demand of each traveler type as well as the size of each type in a given period.

Denote by sitτ the share of type-i buyers who arrived in period τ and purchase a ticket in period

t conditional on not exiting the market. This share corresponds to the probability that traveler ι

has a realization of ειit, t = τ, ..., T that satisfies inequalities defined in (2). Under the assumption

that ειiτ is extreme value, this share is equal to

sitτ =

exp

(
δT−ti µi+ρit−pt

σiδ
T−t
i

)
1 +

∑T
k=τ exp

(
δT−ki µi+ρik−pk

δT−ki σi

) .

Consider the size of type-i buyers who arrived in period τ . By time t, only δt−τi of the initial size

has not exited the market due to a realized emergency. Thus, the total demand of type-i travelers

is equal to:

Dit =
t∑

τ=1

sitτδ
t−τ
i M̃iτ ;

the market demand for tickets in period t is given by:

Dt =
I∑
i=1

Dit.

Thus, the vector of demand parameters θ̃ includes the following parameters: shares of each

customer type γi, the mean utilities µi, the price sensitivity σi, the probability of cancellation δi,

the arrival parameters λit.
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Number of occupied seats The probability of not cancelling a trip for traveller of type i who

bought a ticket in period t by the time of departure is given by δT−ti . Thus the number of occupied

seats is equal to

Q =
T∑
t=1

Qt, where Qt =
I∑
i=1

δT−ti Dit.

Welfare9 For each price path p, we can calculate the sum of utilities for each type of travelers.

Consider the group of type-i travelers who arrived at time τ and define the average aggregate utility

of this group by viτ (p). Then,

viτ (p) =

∫
ι

max
τ≤τ ′≤T

{
δT−τi [µi + σi (ειiτ ′ − ειi0)] + δτ

′−τ
i (ρiτ ′ − pτ ′) , 0

}
dι.

Integrating with respect to the extreme value distribution, we get:

viτ (p) = δT−τi σi log

(
1 +

T∑
t=τ

exp

(
δT−ti µi + ρiτ − pτ

δT−ti σi

))
.

Then, the total sum of traveler’s utilities equals:

V (p) =

I∑
i=1

T∑
τ=1

viτ (p) M̃iτ .

Define social welfare as the sum of travelers’ ex-post utilities and the airline’s profit. The supply

and allocation of seats among travelers are efficient if they maximize social welfare. A price path

p is called efficient if it induces an efficient supply and allocation of seats. By the First Welfare

Theorem, the allocation of seats will be efficient only if all consumers take the same prices into

account. If it is not the case, then there could be two customers who would be willing to trade

with each other right before departure. The reason why the customer who wants to buy the ticket

now didn’t buy it before was his higher probability of cancellation. Therefore, there is always

some positive probability that the ex-post allocation is not efficient, therefore any price path with

a positive cancellation fee is not efficient.

Thus, there are three conditions for efficient supply and allocation of seats. First, the price path

has to be flat. Second, it has to equal to the value of the marginal costs c̃. Third, the cancellation

fee has to be zero. If the cancellation fee is positive, then the expected value of the refund is

9Given the data limitations, I can only estimate the welfare effects of intertemporal price discrimination on direct
passengers.
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different for customers of different types. This fact implies that even thought the airline offers the

same menu of fares to all customers, the effective ex-post price is different for different customer

types.

These conditions illustrate two impediments to the efficient supply and allocation of seats:

market power and dynamic pricing. First, if price exceeds marginal cost, then the number of seats

sold by the airline is lower than the socially efficient level. As a result, social welfare is lower

than its maximum level due to inefficiency in the quantity of production. Second, if the price path

is not flat, then the airline charges different prices in different time periods, which results in a

misallocation of seats among travelers. In this case, social welfare does not achieve its maximum

level due to inefficiency in allocation. A positive cancellation fee makes a ticket less attractive to

travelers. For this reason, I refer to it as a measure of ticket quality. A positive cancellation fee thus

implies inefficiency in the quality of production. Inefficiency in quality of production, inefficiency

in quantity of production, and inefficiency in allocation are the three reasons why a price path may

not induce an efficient outcome.

3.3 Optimal Price Path

A price path p is called optimal if it maximizes the airline’s profit π (p):

π (p) =
T∑
t=1

[(pt − c̃)Qt + min (f, pt) (Dt −Qt)]

Denote by p∗
(
θ̃, c
)

the optimal price path as a function of the demand parameter θ̃ and the cost

parameter c̃.

Except for a knife-edge realization of the demand and cost parameters, the optimal price path

implies intertemporal price discrimination, i.e. prices differ in different periods. Furthermore, in

practice, airlines often impose a positive cancellation fee for lower fares. Even though a positive

cancellation fee diminishes the quality for all traveler groups, travelers with a higher probability of

cancellation suffer from it more. If the probability of cancellation is positively correlated with the

utility from flying, the fee screens travelers by their type.

Thus, our theoretical analysis suggests that price paths observed in practice lead to all three

types of inefficiency identified in the previous subsection: inefficiency in quality of production,
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inefficiency in quantity of production, and inefficiency in allocation. To evaluate the welfare losses

associated with each type of inefficiency, we need to know the estimates of the demand parameter

θ̃ and cost parameter c̃. I will estimate these parameters using a sample of optimal price paths and

corresponding quantities.

4 Data

4.1 Monopoly Markets

A market is defined by three elements: origin airport, destination airport and departure date. A

product is an airline ticket that gives a passenger the right to occupy a seat on a flight from the

origin to the destination departing on a particular date.

To be included in my dataset, a domestic route has to satisfy five criteria. First, the operating

carrier on the route was the only scheduled carrier in the time period I consider. Second, the carrier

had to have been the dominant firm for at least a year before the period I consider. Specifically,

its share in total market traffic had to be at least 95% in each month prior to the period of study.

Third, at least 90% of the passengers flying from the origin to the destination must fly nonstop.

Fourth, total market traffic on the route must be at least 1000 passengers per quarter. Fifth, there

should be no alternative airports that a traveler willing to fly this route can choose. I do not include

routes to/from Alaska or Hawaii. These criteria were chosen to limit ambiguities in markets and

to ensure the markets were nontrivial.

In all, I have 76 directional routes that satisfy these criteria. A typical route has a major airline

hub as either its origin or destination. There are six monopoly airlines in the dataset: American

Airlines (26 routes to or from Dallas/Fort Worth, TX), Alaska Airlines (26 routes mainly to or from

Seattle, WA), United/Continental Airlines (8 routes to or from Houston, TX), AirTran Airways (4

routes to or from Atlanta, GA), Spirit Airlines (6 routes to or from Fort Lauderdale, FL), and US

Airways (6 routes to or from Phoenix, AZ). Table 1 gives summary statistics of route characteristics.
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Table 1: Monopoly routes: summary statistics
mean st.d.

distance 401 213
median family income $71,942 $8,432
average ticket price $205 $236
quarterly traffic, passengers 16,663 11,854
share of major airline, traffic 0.9953 0.0188
share of nonstop passengers 0.9772 0.0255
share of connecting passengers 0.6511 0.2616
load factor 0.7104 0.0896

4.2 Data Sources

Fares are distributed by the Airline Tariff Publishing Company10 (ATPCO), an organization that

receives fares from all airlines’ pricing departments. It publishes North American fares three times

a day on weekdays, and once a day on weekends and holidays.11 Until recently, the general public

did not have access to information stored in global distribution systems. Yet a few websites have

provided travelers with recommendations on when is the best time to book a ticket based on this

information. In 2004, travelers received direct access to public fares and booking class availabilities

through several new websites and applications. I recorded fares manually from a website that has

access to global distribution systems subscribed to ATPCO data. This website is widely known

among industry experts and regarded as a reliable and accurate source of public fares.12 I recorded

fares that were published six weeks before departure. The period of six weeks is motivated by three

facts. First, few tickets are sold earlier than that period. Second, most travel websites recommend

searching for cheap tickets six to eight weeks before departure. Third, when a pricing department

updates fares it takes into account flights that depart in the next several weeks rather than flights

that depart in the next several days. Thus, I believe that it is reasonable to assume that fares

posted six weeks before departure reflect the optimal decision of pricing departments.

I consider three quarters of departure dates between October 1, 2010 and June 30, 2011. Besides

10Until recently, ATPCO was the only agency distributing fares in North America. In March 2011, SITA, the only
international competitor of ATPCO, received an approval from the US Department of Transport and the Canadian
Transportation Agency to distribute data for airlines operating in the region.

11On weekdays, the fares are published at 10 am, 1 pm and 8 pm ET. On weekends, the fares are published at 5
pm. In October 2011, ATPCO added a fourth filing feed on weekdays – at 4 pm ET.

12In addition to public fares that are available to any traveler, airlines can offer private fares. Private fares are
discounts or special rates given to important travel agencies, wholesalers, or corporations. Private fares can be sold
via a GDS that requires a special code to access them or as an offline paper agreement. In the United States, the
majority of sold fares are public.
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the data on daily fares described above, I use monthly traffic data from the T-100 Domestic Market

database and the Airline Origin and Destination Survey Databank 1B that contains a 10% random

sample of airline tickets issued in the U.S. within a given quarter. Both datasets are reported to

the U.S. Department of Transportation by air carriers and are freely available to the public. In

the estimation, I control for several route characteristics, which allows me to compare different

markets with each other. These characteristics include route distance, median household income in

the Metropolitan Statistical Areas to which origin and destination airports belong, and population

in the areas.

5 Estimation

5.1 Econometric Specification

My empirical model allows for two types of travelers. I refer to the first type as leisure travelers

(L), and to the second type as business travelers (B). Leisure travelers are highly price sensitive

customers who are willing to book earlier and are more willing to accept ticket restrictions. Business

travelers, on the other hand, are less price sensitive, book their trips later and less likely to accept

restrictions.13 The demand parameters of the model of optimal fares are able to capture these

distinctions.

For a given departure date d = 1, ..., D and a given route n = 1, ..., N , the demand parameters

θ̃nd and the cost parameter c̃nd determine the optimal price path p∗
(
θ̃nd, c̃nd

)
. These parameters

are known to the airline but unknown to the researcher. The goal of the estimation routine is to

recover θ̃nd and c̃nd for each date and route from the observed price and quantity data. Given the

limitations of the dataset, I need to reduce the dimension of the unknown parameters. To do this,

I restrict both observed and unobserved variation in the parameters within and across markets.

The shares of each type, γi, are assumed to be the same in all routes and all departure dates.14

Type-specific mean utilities from flying, µi, are proportional to the route distance. The propor-

tionality coefficient in turn linearly depends on the route median income. These coefficients do not

13See, Phillips (2005).
14This assumption is very restrictive. I have estimated the model on different subsamples of routes for different

airlines. The results are qualitatively similar.
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vary with the departure date. Thus,

µind = µ1i + (µ2i + µ3i · incomen) · distn.

The variance of the type-I error (σi) that controls intertemporal utility variation within a type is the

same in all markets and all departure dates. The probability of having to cancel the trip, 1− δi, is

also the same in all routes but varies with the departure date. It can take two type-specific values:

one for regular season and one for holiday seasons. Holiday season departure dates correspond

to Thanksgiving, Christmas, New Year’s and Spring Break. The probability of canceling a trip is

different during these periods as travelers may be more certain about their holiday trips than about

their regular trips. If we denote by hd the holiday season dummy variable, then

δind = δholidayi · hd + δregulari · (1− hd) .

The share of new passengers who arrive in period τ , has the following parametric representation:

λ̂iτnd = λ (τ, T, αi) + ελτnd =
( τ
T

)αi
−
(
τ − 1

T

)αi
+ ελτnd,

where ελ1nd is normalized to 0 and ελ2nd, ..., ελTnd are unobserved i.i.d. mean-zero errors. The

parameter αi determines the time when the majority of type-i consumers start searching for a

ticket: types with low values of αi begin their search early, types with high values of αi arrive to

the market only a few days before departure. These parameters are the same for all routes and

departure dates. The unobserved error ελτnd randomly shifts the arrival probabilities. Since the

airline observes these errors before it determines its price path, these errors explain a part of the

daily variation in observed fares. The sum of the errors does not affect the optimal price path and

thus is not identified from the observed fares. For this reason, I normalize the value of the first

error to zero.

The value of the expected marginal costs c̃nd, by construction, is equal to the derivative of

the total economic costs evaluated at the profit-maximizing level of the total quantity of occupied

seats. The economic costs include both the operational costs and the shadow costs of capacity.

If the total quantity of occupied seats were available, then the most natural way to estimate c̃

would be as nonparametric function of the total quantity. I do not observe this quantity, so I

estimate the average value of the marginal costs by assuming that c̃ = c + εcnd where εcnd is a

22



mean-zero deviation of the actual value from its mean. The unobserved error εcnd randomly shifts

the opportunity cost of flying a passenger each day and in each route and also explains a part of the

daily variation in observed fares. It captures factors that affect both the operational costs (such us

distance, capacity, etc.), and the shadow cost of the capacity constraint (the demand of connecting

passengers etc.). This error shifts the entire time path of prices, while ελτnd affects relative levels

of the prices in the path.

The total number of potential travelers is different for each route and each departure date. I

denote by Mn the mean number of travelers on route n and assume that the deviations from these

means, the arrival errors ελτnd, and the cost errors εcnd are jointly independent.

Together, we can divide all demand and cost parameters known to the airline into three groups:

estimated coefficients θ = (γ, µ, σ, δ, α) , c, and Mn, errors unobserved to the researcher εnd =

(ελnd, εnd), and market specific covariates (hd, xn), where xn denotes route characteristics such as

(distn, incomen). These restrictions allow me to estimate the coefficients jointly for all markets in

my sample.

5.2 Moment Restrictions

To estimate the demand parameter θ and cost parameters c, I follow the standard practice of using

both price and quantity data. However, I face the nonstandard complication that these data are

observed with different frequencies: prices are observed daily, quantities are observed quarterly.

Only having quarterly quantity data means that they contain two sources of variation: variation

due to different departure dates and variation due to different purchase dates. I use the model of

optimal fares to distinguish between these two sources of variation.

5.2.1 Daily prices

Define by ptnd the lowest fare satisfying the advance purchase requirement for period of sale t for

route n and departure date d. Since the posted fares should be equal to the optimal fares predicted

by the model, the posted fares should satisfy the system of first order conditions:

G
(
p, θ̃
)

=

∂π
(
p; θ̃
)

∂p1
, ...,

∂π
(
p; θ̃
)

∂pT


′

.
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To construct moment restrictions that correspond to the posted prices, we need to invert the system

of equations to derive an expression for the unobserved error term εnd.It turns out that there exists

a unique mapping gP : RT × Rdim(θ) × Rdim(hd) × Rdim(xn) → RT , such that for any θ, it holds

that G (pnd, θ, hd, xn , gP (pnd, θ, hd, xn)) = 0. The proof of this statement follows from the fact that

the system of first order conditions is triangular and linear with respect to the errors. The first

equation includes only εcnd, the second equation includes εcnd and ελ2nd., etc. Thus, we can invert

the system by the substitution method: derive the value of εcnd from the first equation and plug it

into the second one, etc.

Since we assumed that εnd has zero mean, the moment restrictions that correspond to the

observed prices take the following form:

Eεnd = Egp (pnd, θ, hd, xn) = 0.

I use these restrictions as the basis for the first set of sample moment conditions.

5.2.2 Monthly traffic

The model predicts the expected total number of direct passengers for departure date d and route

n is equal to
∑T

t=1Qndt

(
pnd, θ̃

)
. In the data, we observe the actual number of flying passengers.

Denote by Qtrafficnm the total number of enplaned direct passengers observed in the data for route

n and month m. Thus, the predicted number of enplaned passengers is equal to

∑
d∈month(m)

I∑
i=1

T∑
t=1

Qndit

(
pnd, θ̃

)
.

Denote by gM

(
pnd, θ̃,Mnm

)
=
∑

d∈month(m)

∑I
i=1

∑T
t=1 δ

T−t
id Dit

(
pnd, θ̃

)
− Qtrafficnm . This error

comes from the fact that the revenue-management department due to the stochastic nature of the

demand cannot perfectly implement the plan designed by the pricing department. Sometimes it

allocates more seats to a certain class, sometimes less. The goal of the revenue management depart-

ment, however, is to get as close to the target level as possible. Therefore, it is not unreasonable

to assume that the variance of the error is bounded and its expected value is equal to zero. Then,

a moment restriction that corresponds to the observed number of enplaned passengers is given by:

EgM
(
pnd, θ̃, Q

traffic
nm

)
= 0.
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I use this restriction as to define the second set of sample moment conditions.

5.2.3 Quarterly sample of tickets

Denote by rlnq a ticket issued for market n in quarter q and let p (rlnq) and f (rlnq) denote the

corresponding one-way fare and number of traveling passengers.15 The quarterly ticket data have

several potential sources of measurement error. These data include special fares, frequent flier

fares, military and government fares, etc. To reduce the impact of these special fares, I do the

following. First, I divide the range of possible prices intoB+1 non-overlapping intervals:16 [pb, pb+1],

b = 0, ...., B. For each interval, the model predicts the total number of tickets sold during the

quarter. Hence, we can calculate the model-predicted probability of drawing a ticket from each

interval. Denote by wbnq the probability of drawing a ticket with a price that belongs to interval

[pb, pb+1] for market n in quarter q. This probability equals:

wbnq

(
pnd, θ̃

)
=

∑
d∈quarter(q)

∑I
i=1

∑T
t=1Qit

(
pnd, θ̃

)
· 1 {ptnd ∈ [pb, pb+1]}∑

d∈quarter(q)
∑I

i=1

∑T
t=1Qit

(
pnd, θ̃

) ,

Similarly, we can calculate the relative frequency of observing a ticket within a given price

range using the 10% sample of airline tickets. I treat a ticket with multiple passengers as multiple

tickets with one passenger each. If a ticket has a round-trip trip fare, I assume that I observe

two tickets with two equal one-way fares. Finally, I only take into account those intervals for

which the model predicts non-zero probabilities. Denote these frequencies as ŵbnq and define

gW

(
pnd, θ̃, rnd

)
= [w1nq − ŵ1nq, ..., wBnq − ŵBnq]′.

Assuming that the 10% sample is drawn at random, we can derive the third part of the moment

restriction set from the population moment conditions for each price interval:

EgW
(
pnd, θ̃, rnm

)
= 0.

To avoid linear dependence of the moment restrictions, I exclude the last interval.

15I manually removed the taxes to get the published fares. The details are in Appendix B.
16I estimate the model using the following 17 price thresholds: 20, 50, 80, 100, 120, 135, 150, 170, 190, 210, 220,

240, 270, 300, 330, 360, 410.
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Figure 3: Identification

5.3 Estimation Method and Inference

I use a two-step generalized method of moments. The optimal weighting matrix is estimated

using unweighted moments. For computational purposes, I optimize the objective function for a

monotone transformation of the parameters. This transformation guarantees that the estimates

will be positive and, where necessary, less than one. The standard errors are calculated using the

asymptotic variance matrix for a two-step optimal GMM estimator.

5.4 Identification

Section 5.2 established T moment restrictions based on the daily fare data, one restriction based

on the monthly traffic data and B restrictions based on the quarterly ticket data. I use these

T +B+ 1 = 5 + 17 + 1 = 23 moment conditions to estimate the 15 parameters that define θ and c.

These parameters are identified from the joint distribution of daily optimal prices and quantities

aggregated to the quarterly level. To show identification formally, I would need to prove that the T

moment restrictions can be satisfied only under the true parameter θ0. This fact is rarely possible

to prove without knowing the true distribution of the data.

To gain intuition on what properties of the joint distribution identify each component of the

parameter θ, I performed two simulation exercises using the model of optimal fares. The first

exercise shows how a change in each component of the demand and cost parameter θ affects the
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profit maximizing vectors of prices and quantities. The second exercise does the opposite. After

changing a component of the price-quantity vector, I find a vector of parameters θ under which the

new price-quantity vector would maximize the airline’s profit. Based on these results, I can provide

an intuitive explanation for how the joint distribution of the data may identify the parameters of

the model. The explanation is, by all means, heuristic as we should keep in mind that whenever we

change one parameter of the model, all components of the profit-maximizing prices and quantities

will necessarily change.

Consider a representative market. The solid line in Figure 3 shows a typical price path that we

observe in the data. For the sake of argument, suppose we also observe the corresponding quantities

of sold tickets for this departure day. These quantities are depicted by the bar graph on Figure 3.

Thus, we know two profit maximizing vectors p = (p1, p2, p3, p4, p5) and q = (q1, q2, q3, q4, q5). From

these vectors, we need to infer the following demand and cost parameters: a share of each type γ,

the mean utilities µi, the within-type heterogeneity parameter σi, the probability of cancellation

δi, the arrival parameters αi, and the cost parameter c.

The behavior of the typical price path can be described as follows. In the first two periods, the

price rises but at a relatively slow level. Then in period 3 or 4, the price jumps up and continues to

increase but, again, with a slower speed. To understand this behavior, consider the tradeoff that

the airline has. Recall that it faces two heterogeneous groups of customers with different marginal

willingness to pay: business travelers are willing to pay more than leisure travelers. Therefore, the

airline can charge a high price and receive a low quantity as most leisure travelers cannot afford to

fly. Alternatively, it can charge a low price but receive a high quantity. The price path suggests

that it should be profit maximizing for the airline to charge a low price in the first periods and

then switch to a high price.

Having this intuition in mind, we can infer that most customers buying early are leisure (type

1) travelers, while customers who are buying later, at a higher price, are business (type 2) travelers.

The exact level of the prices in early periods is determined by the elasticity of leisure travelers, while

the price level in later periods is determined by the elasticity of business travelers. The elasticity of

each group in turn depends on the price-sensitivity parameter σi. Similarly, the quantities sold in

early periods reveal information about the mean utility of leisure travelers (µL), while the quantities

sold in later periods depend on the mean utility of business travelers (µB). By comparing the sum
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of quantities sold in early periods with the total sum of quantities, and taking into account the

profit maximizing conditions, we can infer the share of leisure type (γ).

The increase in prices in period 2 compared to period 1 is determined by the probability of

cancellation. After the first period, customers became more certain about their travel plans since

there are fewer periods during which they can learn that they won’t be able to fly. As a result, they

are willing to pay more. The airline realizes this change and increases price. Since most customers

who are buying tickets in the first two periods are leisure travelers, the change in these two prices

identifies the probability of cancellation for leisure travelers (δL). Similarly, the probability of

cancellation for business travelers (δB) is identified from the change in the last two prices. Further,

if no new customers arrived in period 2, the profit-maximizing quantities in period 1 and 2 would

be the same. Customers with a high first-period shock ειi1 would buy in period 2, customers with

a high second-period shock ειi2 would buy in the second period. The picture suggests that this is

not the case. The reason why the quantity in period 2 is higher is the arrival of new customers. For

the same reason, quantities in period 4 and 5 are also different. Thus, the exact difference between

the two quantities reveals the value of the arrival parameter αi.

Finally, the period in which the price jump occurs identifies the value of the cost parameter c.

Intuitively, in the equilibrium, the marginal revenue that the airline receives from business travelers

should be equal to the marginal revenue it receives from leisure travelers and both should be equal

to the value of marginal cost. If the costs are high, then the marginal revenue the airline receives

from leisure travelers has to be higher. Therefore, fewer leisure travelers will be served in the

equilibrium, so the airline has to switch to business travelers sooner. If the costs are low, then the

marginal revenue from leisure travelers has to be low, so the airline will offer the lower price longer.

If the menus of fares are the same for all travel dates within a quarter, we can just divide the

quarterly aggregated quantities by the number of travel dates and apply this intuition directly.

Suppose that the menus of fares are the same except for one travel date, say, Thanksgiving. Then,

this travel date has its own menu of fares, at least one price of which is different from the rest.

We can look at the quantity that is associated with this price, and based on it and the model

of optimal fares, deduce the quantities for other fares from these menus. After subtracting these

quantities from the aggregated data, we are back in the original setting when the fares are the same

for the remaining travel dates. This intuitive explanation suggests that the aggregated quantity

28



Table 2: Estimates of demand and cost parameters

Leisure Travelers Business Travelers

Share of Traveler Type γi 79.71%
(0.20%)

20.29%
(0.20%)

Mean Utility µi $43.63
(1.05)

+

[
$7.11
(0.01)

+ 0.89
(0.05)

incomen

]
distn $320.23

(19.35)
+

[
$27.89
(4.95)

+ 2.54
(1.54)

incomen

]
distn

Price sensitivity σi 0.34
(0.007)

2.46
(0.06)

Probability of cancellation
regular season / holiday season

1− δi 9.95%
(0.11%)

/ 0.79%
(0.01%)

12.33%
(0.13%)

Arrival process parameter αi 0.02
(0.09)

7.85
(1.82)

Marginal cost c $4.00
($12.36)

Note: incomen is in $ 100,000, distn is in 100 miles.

data provide us with informative moment conditions.

6 Results

6.1 Demand and Cost Estimates

Table 2 presents the two-step GMM estimates of the demand and cost parameters. Based on these

estimates and the model of optimal fares, I calculate that 76% of passengers travel for leisure

purposes. Business travelers are willing to pay up to six times more for a seat on the average route

in my data sample and they are less price sensitive. If fares in all periods go up by 1%, the total

demand of leisure travelers goes down by 1.3%, while the total demand of business travelers goes

down by 0.8%. Business travelers tend to avoid tickets with a cancellation fee as the probability

that they have to cancel a ticket is high.

The dynamics of arrival of each traveler type for the estimate of the arrival process αi is depicted

by dotted lines in Figure 4. A significant share of leisure travelers start searching for a ticket at least

six weeks prior to departure. By contrast, 83% of business travelers begin their search in the last

week. The bar graph in Figure 4 demonstrates how the number of active buyers changes over time.

In the first few periods, the number of active buyers goes down as travelers buy tickets or learn

that they will not be able to fly. The arrival of new travelers does not counteract this decrease. A

week before departure, most business travelers start searching for tickets, and the number of active

ticket buyers goes up.
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Figure 4: Dynamics of active buyers on a route with median income and distance
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Figure 5: Optimal price path for a route with median distance and income

6.2 Optimal Price Path and Price Elasticities

To put these estimates into perspective, I use the model of optimal fares to calculate the price path

for flights on a route with median characteristics on a non-holiday departure date. Figure 4 shows

this path together with the quantities of tickets purchased in each period by leisure and business

travelers. The figure shows that leisure travelers usually purchase tickets up until seven days before

departure, prior to the moment when most business travelers arrive in the market. When business

travelers arrive, the airline significantly increases the price, trying to extract more surplus from

travelers who are willing to pay more.

Table 3 presents the estimates of price elasticities evaluated at the optimal price path. The

estimates show that in periods 1 and 5 the airline extracts almost the maximum amount of revenue

from travelers as the elasticities are close to one. In both periods, the buyers are almost homogenous.

In period 1, the majority of active buyers are leisure travelers. In period 5, the price is so high that

only business travelers can afford it. By contrast, in periods 3 and 4, the estimates of elasticities

indicate that the maximum revenue is not achieved. As we can see from the quantity estimates in

Figure 5, both groups are buying tickets at the optimal prices in these periods.

6.3 Welfare Estimates

Compared to the efficient supply and allocation of seats, the model’s profit-maximizing ticket allo-

cation predicts that travelers and the firm attain 79% of the maximum gains from trade. That the
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Table 3: Estimates of price elasticities
Market Demand in Period:

Price in Period: t = 1 t = 2 t = 3 t = 4 t = 5

t = 1 −2.634 0.598 0.647 0.562 0.013
t = 2 0.549 −6.178 1.596 1.388 0.033
t = 3 0.546 1.467 −10.923 2.707 0.072
t = 4 0.448 1.207 2.560 −16.538 0.193
t = 5 0.034 0.099 0.241 0.695 −2.654

gains are below 100% is due market power distortions and misallocations due to price discrimina-

tion. Figure 6 shows the distribution of utilities for two groups of travelers who are able to fly on

the day of departure. The first group includes travelers who bought tickets, the second group are

travelers who didn’t buy tickets because of high prices. If the allocation was efficient, only travelers

who value a ticket more would end up buying it. As we can see from the figure, there is an overlap

in the supports of these two distributions. This fact indicates that the optimal price path leads to

misallocations of seats.

7 Counterfactual Simulations

In the counterfactual simulations, I consider three alternative market designs that can eliminate

some types of inefficiency caused by intertemporal price discrimination. The first scenario allows

costless resale in the presence of market arbitrageurs. Under this assumption, two types of inef-

ficiencies would disappear: quality distortions and misallocations among the consumers. On the

other hand, the third type of inefficiency, inefficiency in the quantity of production, could increase.

In the second scenario, the airline is allowed to sell only fully refundable tickets. This restriction

eliminates one type of inefficiency, quality distortions. By doing so, it reduces the firm’s abil-

ity to price discriminate, and therefore, decreases allocative inefficiency. However, the restriction

can increase inefficiency in the quantity of production. The last scenario considers the case of

direct price-discrimination when the airline can perfectly identify customers’ types and set prices

contingent on them.
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Figure 6: Distributions of travelers’ utilities under the optimal allocation of seats
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7.1 Costless resale

To study the effects of a potential secondary market, I modify the fare model in the following way.

In addition to travelers and the airline, I assume there exists an unlimited number of arbitrageurs.

In any period, an arbitrageur can buy a ticket from the airline and then sell it to travelers later.

The arbitrageurs are price-takers. Their goal is to maximize the difference between the price at

which they buy a ticket and the price they sell a ticket later. Under these assumptions, the optimal

price path has to be flat. To see that, first, note that for any optimal sequence of prices, the

maximum profit of each arbitrageur is zero. Indeed, if an arbitrageur is able to extract some profit

then the airline can repeat her actions and increase its profit, which would violate the condition of

profit-maximization. Since the maximum profit of each arbitrageur is zero, the optimal price path

cannot be increasing. But could it be profitable for the airline to decrease the prices? Only if it

did so without resale. Thus, if the price path without resale is increasing, then the optimal price

path in a market with costless resale is flat.

To calculate the optimal fare in this counterfactual scenario, it is sufficient to consider the profit

maximization problem assuming that the price path is flat. The share of type-i buyers who arrive

in period τ and purchase a ticket in period t becomes:

sitτ =
exp

(
µi−p
σi

)
1 +

∑T
k=τ exp

(
µi−p
σi

) =
exp

(
µi−p
σi

)
1 + (T − τ + 1) exp

(
µi−p
σi

) .

This share is the same for all purchase periods t since travelers pay the same price in all periods

and can get a full refund if they have to cancel their tickets. The airline’s profit is equal to:

π
(
p; θ̃
)

= (p− c̃)
I∑
i=1

T∑
t=1

δT−ti Dit.

Since the value of the expected marginal costs is identified only at the profit-maximizing level,

we need to make an assumption about its value in the counterfactual scenario. I will make two

alternative assumptions. In the first case, I assume that the expected value of the marginal costs

is flat. This assumption corresponds to an ideal situation in which the airline is able to adjust its

capacity continuously. The value of c̃ will represent the minimum expected value of the average

costs, which is the value of the expected marginal costs evaluated at the minimum efficient scale.

In the second case, I assume that the graph of the marginal costs is a vertical line, i.e. the airline
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Figure 7: Resale (constant marginal costs)

cannot adjust their capacity.

In both cases, the welfare effects of ticket resale are unclear because the ability to resell tickets

eliminates the inefficiency in quality of production and the flat optimal price eliminates inefficiency

in allocation. However, inefficiency in the quantity of production may go up since the airline is

not able to price discriminate. To quantify the net effect on social welfare, I again use the value

of demand parameters that correspond to a route with median characteristics and a non-holiday

travel date.

Figure 7 shows the optimal price path for the first case in which the expected marginal costs are

fixed. If resale were possible, the average price of a ticket bought by leisure travelers would increase

from $77 to $118, while the average price of a ticket purchased by business travelers would decrease

from $318 to $118. The effect on the business traveler is unambiguous: they pay a lower price and

buy a higher quality product. The effect on the leisure travelers is theoretically ambiguous. The

price for them increases for two reasons. First, they compete against customers who are willing

to pay more. Second, they are willing to pay more for a higher quality product. The estimates

suggest that the first effect dominates: their consumer welfare goes down by 20%. The number of

seats occupied by them would correspondingly decrease by 10%. The number of seats occupied by

business travelers would go up by 50% and the consumer surplus of business travelers increases by

almost 100%. The airline’s profit decreases by 28%. Overall, social welfare on the average route

increases by 12%. The decrease in the airline’s profit may force the airline to exit from the market,
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Figure 8: Resale (fixed capacity)

which will decrease the social welfare to zero. Since the fixed costs of the airline are not identified

without observing any variation in entry-exit behavior, I cannot evaluate how plausible such an

outcome may be.

In the first case, the total number of occupied seats goes up. Therefore, to consider the case in

which the airline cannot adjust their capacity, I increased the value of the marginal costs until the

number of occupied seats in the counterfactual scenario is equal to its initial level. Figure 8 shows

that qualitatively the welfare effects of intertemporal price discrimination remain the same. The

average price goes up even more, the median price goes down. The airline’s profit decreases even

further. The gains for the business travelers outweighs the losses of leisure travelers and the airline.

In this counterfactual, the inefficiency in production is fixed since the total quantity remains the

same. The increase in the social welfare (+6%) comes from elimination inefficiency in allocation of

seats caused by intertemporal price discrimination.

7.2 The role of cancellation fee

The cancellation fee has two effects on social welfare. Directly, it affects the quality of production.

Indirectly, it also affects the allocation and supply of tickets as it changes the airline’s ability to price

discriminate over time. A zero cancellation fee achieves the socially optimal level of ticket quality.

On the other hand, the airline loses one of its screening tools, which makes price discrimination

more difficult.
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Figure 9: Zero cancellation fee

With a zero cancellation fee, the expected value of a refund is equal to Riτ =
(

1− δT−τi

)
pτ ,

changing both individual demand functions and the airline’s profit. The share of type-i buyers who

arrived in period τ and purchase a ticket in period t now becomes:

sitτ =
exp

(
µi−pt
σi

)
1 +

∑T
k=τ exp

(
µi−pk
σi

) ,

while the airline’s profit is equal to:

π
(
p; θ̃
)

=
I∑
i=1

T∑
t=1

δT−ti (pt − c̃)Dit.

With a zero cancellation fee, the optimal price path becomes flatter. As a result the inefficiency

in allocation goes down but inefficiency in the quantity of production may go up. The net effect on

social welfare is theoretically ambiguous and depends on the value of demand and cost parameters.

Figure 9 shows the optimal price path on a route with median distance and income departing

on a non-holiday date. With zero cancellation fee, the difference between average prices paid by

business and leisure travelers would go down from $305 to $273. This decrease is mainly caused by

the fact that the average price that leisure travelers pay goes up. The reason why leisure travelers

would be willing to accept higher prices is the better quality of airline tickets. The consumer surplus

of both groups would go up slightly while the airline’s profit would go down. Overall, social welfare

would increase, but by a relatively small amount (less than 1%). This result is not too surprising as
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Figure 10: Third degree price discrimination

the airline does not really need to separate business and leisure travelers, as most business travelers

are estimated to arrive later than leisure travelers.

This counterfactual assumes that the time when travelers start searching for the ticket is ex-

ogenous and therefore does not depend on the value of the cancellation fee. The exogeneity of

customers’ arrival to the market is the reason why the airline is able to price discriminate. This

assumption, however, may not hold in reality. If there is no cost associated with booking tickets

early, business travelers might start arriving to the market early and book preemptively. This

assumption quickly brings us to the case of costless resale.

7.3 Direct price discrimination

The last counterfactual evaluates the effectiveness of the intertemporal price discrimination strategy.

Suppose the airline can recognize a customer type and charge different prices to different customer

types. Then there will be two price paths: one for business travelers, another for leisure travelers.

The airline will not impose a cancellation fee to separate customers within its type, since there is no

within type variation in the value of the cancellation probability. Therefore, in this counterfactual

I set the cancellation fee to zero. Figure 10 presents the optimal price paths and the corresponding

quantities of sold tickets.

By using intertemporal price discrimination, the airline captures more than 90% of the profit

that it could achieve if type-specific prices were possible. Surprisingly, leisure travelers would
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prefer to see type-specific prices. There are two reasons for that. First, the airline does not have

to damage the product by imposing a cancellation fee. Second, leisure travelers do not compete

directly or indirectly with business travelers. As the result, the airline can offer a lower price to

leisure travelers, not fearing to lose the price margin on business travelers. Business travelers lose

from third-degree price discrimination but their loss is smaller than the total gain of leisure travelers

and the airline.

8 Conclusion

In this paper, I developed an empirical model of optimal fares and estimated it using new data on

daily ticket prices from domestic monopoly markets. The estimates of demand and cost parameters

for monopoly routes allowed me to quantify the costs and benefits of intertemporal price discrimi-

nation. I found that intertemporal price discrimination results in a lower ticket quality for leisure

travelers, higher prices for business travelers, lower supply of tickets for business travelers, lower

overall supply and misallocations of tickets among travelers. On the other hand, the benefits of

intertemporal price discrimination are lower prices and higher supply for leisure travelers.

I also found that free resale of airline tickets would reduce airlines’ ability to price discriminate

over time. As a result, business travelers would win from resale and leisure travelers would lose,

even though the quality of tickets would improve. Overall, the short-run effect of ticket resale

on social welfare is positive. However, since the airline’s profit goes down, it may choose to exit

from the market in the long run. The effect of the cancellation fee on social welfare is small. The

estimated increase in prices is mainly caused by an increase in ticket quality, which does not affect

social welfare. Finally, I found that intertemporal price discrimination allows the airlines to achieve

more than 90% of the profit that third degree price discrimination would generate.

The study focuses on the set of monopoly markets. There are two potential difficulties with

generalizing its results to more competitive markets. First, one may worry about special charac-

teristics of isolated monopoly markets. As the result, the estimated demand parameters may not

be representative of the entire industry. Unless the difference between monopoly markets and the

rest of the industry is solely caused by the number of potential travelers, this is a valid concern.

The second problem is the impact of competition. Dynamic oligopoly models do not generally have
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a unique equilibrium prediction. As a result, in may be very difficult to compare equilibria with

and without price discrimination. In particular, if resale were allowed, we will have to consider an

equilibrium in which a travel agency buys all tickets from the competing airlines at the beginning

of sale and then acts as a monopoly in the secondary market. Whether this outcome is plausible is

a question for future research.
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